1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
|
#include <stdlib.h>
#include <math.h>
#include "fb.h"
#include "ray_camera.h"
#include "ray_color.h"
#include "ray_object.h"
#include "ray_ray.h"
#include "ray_scene.h"
#define MAX_RECURSION_DEPTH 4
static ray_color_t trace_ray(ray_scene_t *scene, ray_ray_t *ray, unsigned depth);
/* Determine if the ray is obstructed by an object within the supplied distance, for shadows */
static inline int ray_is_obstructed(ray_scene_t *scene, ray_ray_t *ray, float distance)
{
unsigned i;
for (i = 0; i < scene->n_objects; i++) {
float ood;
if (ray_object_intersects_ray(&scene->objects[i], ray, &ood) &&
ood < distance) {
return 1;
}
}
return 0;
}
/* shadow test */
static inline int point_is_shadowed(ray_scene_t *scene, ray_3f_t *light_direction, float distance, ray_3f_t *point)
{
ray_ray_t shadow_ray;
/* negate the light vector so it's pointed at the light rather than from it */
shadow_ray.direction = ray_3f_negate(light_direction);
/* we must shift the origin slightly (epsilon) towards the light to
* prevent spurious self-obstruction at the ray:object intersection */
shadow_ray.origin = ray_3f_mult_scalar(&shadow_ray.direction, 0.00001f);
shadow_ray.origin = ray_3f_add(&shadow_ray.origin, point);
if (ray_is_obstructed(scene, &shadow_ray, distance))
return 1;
return 0;
}
/* a faster powf() that's good enough for our purposes.
* XXX: note there's a faster technique which exploits the IEEE floating point format:
* https://github.com/ekmett/approximate/blob/master/cbits/fast.c#L185
*/
static inline float approx_powf(float x, float y)
{
return expf(y * logf(x));
}
/* Determine the color @ distance on ray on object viewed from origin */
static inline ray_color_t shade_ray(ray_scene_t *scene, ray_ray_t *ray, ray_object_t *object, float distance, unsigned depth)
{
ray_surface_t surface;
ray_color_t color;
ray_3f_t rvec = ray_3f_mult_scalar(&ray->direction, distance);
ray_3f_t intersection = ray_3f_sub(&ray->origin, &rvec);
ray_3f_t normal = ray_object_normal(object, &intersection);
unsigned i;
surface = ray_object_surface(object, &intersection);
color = ray_3f_mult(&surface.color, &scene->_prepared.ambient_light);
/* visit lights for shadows and illumination */
for (i = 0; i < scene->n_lights; i++) {
ray_3f_t lvec = ray_3f_sub(&scene->lights[i].light.emitter.point.center, &intersection);
float ldist = ray_3f_length(&lvec);
float lvec_normal_dot;
lvec = ray_3f_mult_scalar(&lvec, (1.0f / ldist)); /* normalize lvec */
#if 1
if (point_is_shadowed(scene, &lvec, ldist, &intersection))
continue;
#endif
lvec_normal_dot = ray_3f_dot(&normal, &lvec);
if (lvec_normal_dot > 0) {
#if 1
float rvec_lvec_dot = ray_3f_dot(&ray->direction, &lvec);
ray_color_t diffuse;
ray_color_t specular;
diffuse = ray_3f_mult_scalar(&surface.color, lvec_normal_dot);
diffuse = ray_3f_mult_scalar(&diffuse, surface.diffuse);
color = ray_3f_add(&color, &diffuse);
if (rvec_lvec_dot > 0) {
/* FIXME: assumes light is a point for its color */
specular = ray_3f_mult_scalar(&scene->lights[i].light.emitter.point.surface.color, approx_powf(rvec_lvec_dot, surface.highlight_exponent));
specular = ray_3f_mult_scalar(&specular, surface.specular);
color = ray_3f_add(&color, &specular);
}
#else
ray_color_t diffuse;
diffuse = ray_3f_mult_scalar(&surface.color, lvec_normal_dot);
color = ray_3f_add(&color, &diffuse);
#endif
}
}
/* generate a reflection ray */
#if 1
if (depth < MAX_RECURSION_DEPTH) {
float dot = ray_3f_dot(&ray->direction, &normal);
ray_ray_t reflected_ray = { .direction = ray_3f_mult_scalar(&normal, dot * 2.0f) };
ray_3f_t reflection;
reflected_ray.origin = intersection;
reflected_ray.direction = ray_3f_sub(&ray->direction, &reflected_ray.direction);
reflection = trace_ray(scene, &reflected_ray, depth);
reflection = ray_3f_mult_scalar(&reflection, surface.specular);
color = ray_3f_add(&color, &reflection);
}
#endif
/* TODO: generate a refraction ray */
return color;
}
static ray_color_t trace_ray(ray_scene_t *scene, ray_ray_t *ray, unsigned depth)
{
ray_object_t *nearest_object = NULL;
float nearest_object_distance = INFINITY;
ray_color_t color = { .x = 0.0, .y = 0.0, .z = 0.0 };
unsigned i;
depth++;
for (i = 0; i < scene->n_objects; i++) {
float distance;
/* Does this ray intersect object? */
if (ray_object_intersects_ray(&scene->objects[i], ray, &distance)) {
/* Is it the nearest intersection? */
if (distance < nearest_object_distance) {
nearest_object = &scene->objects[i];
nearest_object_distance = distance;
}
}
}
if (nearest_object)
color = shade_ray(scene, ray, nearest_object, nearest_object_distance, depth);
depth--;
return color;
}
void ray_scene_render_fragment(ray_scene_t *scene, ray_camera_t *camera, fb_fragment_t *fragment)
{
ray_camera_frame_t frame;
ray_ray_t ray;
uint32_t *buf = fragment->buf;
unsigned stride = fragment->stride / 4;
ray_camera_frame_begin(camera, fragment, &ray, &frame);
do {
do {
*buf = ray_color_to_uint32_rgb(trace_ray(scene, &ray, 0));
buf++;
} while (ray_camera_frame_x_step(&frame));
buf += stride;
} while (ray_camera_frame_y_step(&frame));
}
/* prepare the scene for rendering, must be called whenever the scene has been changed. */
void ray_scene_prepare(ray_scene_t *scene)
{
unsigned i;
scene->_prepared.ambient_light = ray_3f_mult_scalar(&scene->ambient_color, scene->ambient_brightness);
for (i = 0; i < scene->n_objects; i++)
ray_object_prepare(&scene->objects[i]);
}
|