1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
|
/*
* Copyright (C) 2020 - Vito Caputo - <vcaputo@pengaru.com>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* This implements rudimentary 3D drawing of the convex regular polyhedra, AKA
* Platonic solids, without resorting to conventional tessellated triangle
* rasterization.
*
* Instead the five polyhedra are described by enumerating the vertices of their
* faces, in a winding order, accompanied by their edge counts and unique vertex
* counts. From these two counts, according to Euler's convex polyhedron rule,
* we can trivially compute the number of faces, (E - V + 2) and from the number
* of faces to draw derive the number of vertices to apply per face.
*
* No fancy texture mapping is performed, at this time only a wireframe is
* rendered but flat shaded polygons would be fun and relatively easy to
* implement.
*
* It would be interesting to procedurally generate the vertex lists, which
* should be fairly trivial given the regularity and symmetry.
*
* TODO:
* - hidden surface removal (solid)
* - filled polygons
* - shaded polygons
* - combined/nested rendering of duals:
* https://en.wikipedia.org/wiki/Convex_regular_polyhedron#Dual_polyhedra
*/
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>
#include <math.h>
#include "til.h"
#include "til_fb.h"
#include "til_module_context.h"
typedef struct plato_context_t {
til_module_context_t til_module_context;
float r;
} plato_context_t;
typedef struct v3f_t {
float x, y, z;
} v3f_t;
typedef struct polyhedron_t {
const char *name;
unsigned edge_cnt, vertex_cnt;
unsigned n_vertices; /* size of vertices[] which enumerates all vertices in face order */
v3f_t vertices[];
} polyhedron_t;
/* vertex coordinates from:
* http://paulbourke.net/geometry/platonic/
* TODO: procedurally generate these all @ runtime
*/
static polyhedron_t tetrahedron = {
.name = "tetrahedron",
.edge_cnt = 6,
.vertex_cnt = 4,
.n_vertices = 12,
.vertices = {
{ .5f, .5f, .5f},
{-.5f, .5f, -.5f},
{ .5f, -.5f, -.5f},
{-.5f, .5f, -.5f},
{-.5f, -.5f, .5f},
{ .5f, -.5f, -.5f},
{ .5f, .5f, .5f},
{ .5f, -.5f, -.5f},
{-.5f, -.5f, .5f},
{ .5f, .5f, .5f},
{-.5f, -.5f, .5f},
{-.5f, .5f, -.5f},
}
};
static polyhedron_t hexahedron = {
.name = "hexahedron",
.edge_cnt = 12,
.vertex_cnt = 8,
.n_vertices = 24,
.vertices = {
{-.5f, -.5f, -.5f},
{ .5f, -.5f, -.5f},
{ .5f, -.5f, .5f},
{-.5f, -.5f, .5f},
{-.5f, -.5f, -.5f},
{-.5f, -.5f, .5f},
{-.5f, .5f, .5f},
{-.5f, .5f, -.5f},
{-.5f, -.5f, .5f},
{ .5f, -.5f, .5f},
{ .5f, .5f, .5f},
{-.5f, .5f, .5f},
{-.5f, .5f, -.5f},
{-.5f, .5f, .5f},
{ .5f, .5f, .5f},
{ .5f, .5f, -.5f},
{ .5f, -.5f, -.5f},
{ .5f, .5f, -.5f},
{ .5f, .5f, .5f},
{ .5f, -.5f, .5f},
{-.5f, -.5f, -.5f},
{-.5f, .5f, -.5f},
{ .5f, .5f, -.5f},
{ .5f, -.5f, -.5f},
}
};
#define A (1.f / (2.f * 1.4142f /*sqrt(2)*/))
#define B (1.f / 2.f)
static polyhedron_t octahedron = {
.name = "octahedron",
.edge_cnt = 12,
.vertex_cnt = 6,
.n_vertices = 24,
.vertices = {
{ -A, 0.f, A},
{ -A, 0.f, -A},
{0.f, B, 0.f},
{ -A, 0.f, -A},
{ A, 0.f, -A},
{0.f, B, 0.f},
{ A, 0.f, -A},
{ A, 0.f, A},
{0.f, B, 0.f},
{ A, 0.f, A},
{ -A, 0.f, A},
{0.f, B, 0.f},
{ A, 0.f, -A},
{ -A, 0.f, -A},
{0.f, -B, 0.f},
{ -A, 0.f, -A},
{ -A, 0.f, A},
{0.f, -B, 0.f},
{ A, 0.f, A},
{ A, 0.f, -A},
{0.f, -B, 0.f},
{ -A, 0.f, A},
{ A, 0.f, A},
{0.f, -B, 0.f},
}
};
#undef A
#undef B
#define PHI ((1.f + 2.236f /*sqrt(5)*/) / 2.f)
#define B ((1.f / PHI) / 2.f)
#define C ((2.f - PHI) / 2.f)
static polyhedron_t dodecahedron = {
.name = "dodecahedron",
.edge_cnt = 30,
.vertex_cnt = 20,
.n_vertices = 60,
.vertices = {
{ C, 0.f, .5f},
{ -C, 0.f, .5f},
{ -B, B, B},
{ 0.f, .5f, C},
{ B, B, B},
{ -C, 0.f, .5f},
{ C, 0.f, .5f},
{ B, -B, B},
{ 0.f, -.5f, C},
{ -B, -B, B},
{ C, 0.f, -.5f},
{ -C, 0.f, -.5f},
{ -B, -B, -B},
{ 0.f, -.5f, -C},
{ B, -B, -B},
{ -C, 0.f, -.5f},
{ C, 0.f, -.5f},
{ B, B, -B},
{ 0.f, .5f, -C},
{ -B, B, -B},
{ 0.f, .5f, -C},
{ 0.f, .5f, C},
{ B, B, B},
{ .5f, C, 0.f},
{ B, B, -B},
{ 0.f, .5f, C},
{ 0.f, .5f, -C},
{ -B, B, -B},
{-.5f, C, 0.f},
{ -B, B, B},
{ 0.f, -.5f, -C},
{ 0.f, -.5f, C},
{ -B, -B, B},
{-.5f, -C, 0.f},
{ -B, -B, -B},
{ 0.f, -.5f, C},
{ 0.f, -.5f, -C},
{ B, -B, -B},
{ .5f, -C, 0.f},
{ B, -B, B},
{ .5f, C, 0.f},
{ .5f, -C, 0.f},
{ B, -B, B},
{ C, 0.f, .5f},
{ B, B, B},
{ .5f, -C, 0.f},
{ .5f, C, 0.f},
{ B, B, -B},
{ C, 0.f, -.5f},
{ B, -B, -B},
{-.5f, C, 0.f},
{-.5f, -C, 0.f},
{ -B, -B, -B},
{ -C, 0.f, -.5f},
{ -B, B, -B},
{-.5f, -C, 0.f},
{-.5f, C, 0.f},
{ -B, B, B},
{ -C, 0.f, .5f},
{ -B, -B, B},
}
};
#undef PHI
#undef B
#undef C
#define PHI ((1.f + 2.236f /*sqrt(5)*/) / 2.f)
#define A (1.f /2.f)
#define B (1.f / (2.f * PHI))
static polyhedron_t icosahedron = {
.name = "icosahedron",
.edge_cnt = 30,
.vertex_cnt = 12,
.n_vertices = 60,
.vertices = {
{0.f, B, -A},
{ B, A, 0.f},
{ -B, A, 0.f},
{0.f, B, A},
{ -B, A, 0.f},
{ B, A, 0.f},
{0.f, B, A},
{0.f, -B, A},
{ -A, 0.f, B},
{0.f, B, A},
{ A, 0.f, B},
{0.f, -B, A},
{0.f, B, -A},
{0.f, -B, -A},
{ A, 0.f, -B},
{0.f, B, -A},
{ -A, 0.f, -B},
{0.f, -B, -A},
{0.f, -B, A},
{ B, -A, 0.f},
{ -B, -A, 0.f},
{0.f, -B, -A},
{ -B, -A, 0.f},
{ B, -A, 0.f},
{ -B, A, 0.f},
{ -A, 0.f, B},
{ -A, 0.f, -B},
{ -B, -A, 0.f},
{ -A, 0.f, -B},
{ -A, 0.f, B},
{ B, A, 0.f},
{ A, 0.f, -B},
{ A, 0.f, B},
{ B, -A, 0.f},
{ A, 0.f, B},
{ A, 0.f, -B},
{0.f, B, A},
{ -A, 0.f, B},
{ -B, A, 0.f},
{0.f, B, A},
{ B, A, 0.f},
{ A, 0.f, B},
{0.f, B, -A},
{ -B, A, 0.f},
{ -A, 0.f, -B},
{0.f, B, -A},
{ A, 0.f, -B},
{ B, A, 0.f},
{0.f, -B, -A},
{ -A, 0.f, -B},
{ -B, -A, 0.f},
{0.f, -B, -A},
{ B, -A, 0.f},
{ A, 0.f, -B},
{0.f, -B, A},
{ -B, -A, 0.f},
{ -A, 0.f, B},
{0.f, -B, A},
{ A, 0.f, B},
{ B, -A, 0.f},
}
};
#undef PHI
#undef A
#undef B
static polyhedron_t *polyhedra[] = {
&tetrahedron,
&hexahedron,
&octahedron,
&dodecahedron,
&icosahedron,
};
/* 4x4 matrix type */
typedef struct m4f_t {
float m[4][4];
} m4f_t;
/* returns an identity matrix */
static inline m4f_t m4f_identity(void)
{
return (m4f_t){ .m = {
{ 1.f, 0.f, 0.f, 0.f },
{ 0.f, 1.f, 0.f, 0.f },
{ 0.f, 0.f, 1.f, 0.f },
{ 0.f, 0.f, 0.f, 1.f },
}};
}
/* 4x4 X 4x4 matrix multiply */
static inline m4f_t m4f_mult(const m4f_t *a, const m4f_t *b)
{
m4f_t r;
r.m[0][0] = (a->m[0][0] * b->m[0][0]) + (a->m[1][0] * b->m[0][1]) + (a->m[2][0] * b->m[0][2]) + (a->m[3][0] * b->m[0][3]);
r.m[0][1] = (a->m[0][1] * b->m[0][0]) + (a->m[1][1] * b->m[0][1]) + (a->m[2][1] * b->m[0][2]) + (a->m[3][1] * b->m[0][3]);
r.m[0][2] = (a->m[0][2] * b->m[0][0]) + (a->m[1][2] * b->m[0][1]) + (a->m[2][2] * b->m[0][2]) + (a->m[3][2] * b->m[0][3]);
r.m[0][3] = (a->m[0][3] * b->m[0][0]) + (a->m[1][3] * b->m[0][1]) + (a->m[2][3] * b->m[0][2]) + (a->m[3][3] * b->m[0][3]);
r.m[1][0] = (a->m[0][0] * b->m[1][0]) + (a->m[1][0] * b->m[1][1]) + (a->m[2][0] * b->m[1][2]) + (a->m[3][0] * b->m[1][3]);
r.m[1][1] = (a->m[0][1] * b->m[1][0]) + (a->m[1][1] * b->m[1][1]) + (a->m[2][1] * b->m[1][2]) + (a->m[3][1] * b->m[1][3]);
r.m[1][2] = (a->m[0][2] * b->m[1][0]) + (a->m[1][2] * b->m[1][1]) + (a->m[2][2] * b->m[1][2]) + (a->m[3][2] * b->m[1][3]);
r.m[1][3] = (a->m[0][3] * b->m[1][0]) + (a->m[1][3] * b->m[1][1]) + (a->m[2][3] * b->m[1][2]) + (a->m[3][3] * b->m[1][3]);
r.m[2][0] = (a->m[0][0] * b->m[2][0]) + (a->m[1][0] * b->m[2][1]) + (a->m[2][0] * b->m[2][2]) + (a->m[3][0] * b->m[2][3]);
r.m[2][1] = (a->m[0][1] * b->m[2][0]) + (a->m[1][1] * b->m[2][1]) + (a->m[2][1] * b->m[2][2]) + (a->m[3][1] * b->m[2][3]);
r.m[2][2] = (a->m[0][2] * b->m[2][0]) + (a->m[1][2] * b->m[2][1]) + (a->m[2][2] * b->m[2][2]) + (a->m[3][2] * b->m[2][3]);
r.m[2][3] = (a->m[0][3] * b->m[2][0]) + (a->m[1][3] * b->m[2][1]) + (a->m[2][3] * b->m[2][2]) + (a->m[3][3] * b->m[2][3]);
r.m[3][0] = (a->m[0][0] * b->m[3][0]) + (a->m[1][0] * b->m[3][1]) + (a->m[2][0] * b->m[3][2]) + (a->m[3][0] * b->m[3][3]);
r.m[3][1] = (a->m[0][1] * b->m[3][0]) + (a->m[1][1] * b->m[3][1]) + (a->m[2][1] * b->m[3][2]) + (a->m[3][1] * b->m[3][3]);
r.m[3][2] = (a->m[0][2] * b->m[3][0]) + (a->m[1][2] * b->m[3][1]) + (a->m[2][2] * b->m[3][2]) + (a->m[3][2] * b->m[3][3]);
r.m[3][3] = (a->m[0][3] * b->m[3][0]) + (a->m[1][3] * b->m[3][1]) + (a->m[2][3] * b->m[3][2]) + (a->m[3][3] * b->m[3][3]);
return r;
}
/* 4x4 X 1x3 matrix multiply */
static inline v3f_t m4f_mult_v3f(const m4f_t *a, const v3f_t *b)
{
v3f_t v;
v.x = (a->m[0][0] * b->x) + (a->m[1][0] * b->y) + (a->m[2][0] * b->z) + (a->m[3][0]);
v.y = (a->m[0][1] * b->x) + (a->m[1][1] * b->y) + (a->m[2][1] * b->z) + (a->m[3][1]);
v.z = (a->m[0][2] * b->x) + (a->m[1][2] * b->y) + (a->m[2][2] * b->z) + (a->m[3][2]);
return v;
}
/* adjust the matrix m to translate by v, returning the resulting matrix */
/* if m is NULL the identity vector is assumed */
static inline m4f_t m4f_translate(const m4f_t *m, const v3f_t *v)
{
m4f_t identity = m4f_identity();
m4f_t translate = m4f_identity();
if (!m)
m = &identity;
translate.m[3][0] = v->x;
translate.m[3][1] = v->y;
translate.m[3][2] = v->z;
return m4f_mult(m, &translate);
}
/* adjust the matrix m to scale by v, returning the resulting matrix */
/* if m is NULL the identity vector is assumed */
static inline m4f_t m4f_scale(const m4f_t *m, const v3f_t *v)
{
m4f_t identity = m4f_identity();
m4f_t scale = {};
if (!m)
m = &identity;
scale.m[0][0] = v->x;
scale.m[1][1] = v->y;
scale.m[2][2] = v->z;
scale.m[3][3] = 1.f;
return m4f_mult(m, &scale);
}
/* adjust the matrix m to rotate around the specified axis by radians, returning the resulting matrix */
/* axis is expected to be a unit vector */
/* if m is NULL the identity vector is assumed */
static inline m4f_t m4f_rotate(const m4f_t *m, const v3f_t *axis, float radians)
{
m4f_t identity = m4f_identity();
float cos_r = cosf(radians);
float sin_r = sinf(radians);
m4f_t rotate;
if (!m)
m = &identity;
rotate.m[0][0] = cos_r + axis->x * axis->x * (1.f - cos_r);
rotate.m[0][1] = axis->y * axis->x * (1.f - cos_r) + axis->z * sin_r;
rotate.m[0][2] = axis->z * axis->x * (1.f - cos_r) - axis->y * sin_r;
rotate.m[0][3] = 0.f;
rotate.m[1][0] = axis->x * axis->y * (1.f - cos_r) - axis->z * sin_r;
rotate.m[1][1] = cos_r + axis->y * axis->y * (1.f - cos_r);
rotate.m[1][2] = axis->z * axis->y * (1.f - cos_r) + axis->x * sin_r;
rotate.m[1][3] = 0.f;
rotate.m[2][0] = axis->x * axis->z * (1.f - cos_r) + axis->y * sin_r;
rotate.m[2][1] = axis->y * axis->z * (1.f - cos_r) - axis->x * sin_r;
rotate.m[2][2] = cos_r + axis->z * axis->z * (1.f - cos_r);
rotate.m[2][3] = 0.f;
rotate.m[3][0] = 0.f;
rotate.m[3][1] = 0.f;
rotate.m[3][2] = 0.f;
rotate.m[3][3] = 1.f;
return m4f_mult(m, &rotate);
}
/* this is a simple perpsective projection matrix taken from an opengl tutorial */
static inline m4f_t m4f_frustum(float bot, float top, float left, float right, float nnear, float ffar)
{
m4f_t m = {};
m.m[0][0] = 2 * nnear / (right - left);
m.m[1][1] = 2 * nnear / (top - bot);
m.m[2][0] = (right + left) / (right - left);;
m.m[2][1] = (top + bot) / (top - bot);
m.m[2][2] = -(ffar + nnear) / (ffar - nnear);
m.m[2][3] = -1;
m.m[3][2] = -2 * ffar * nnear / (ffar - nnear);
return m;
}
/* convert a color into a packed, 32-bit rgb pixel value (taken from libs/ray/ray_color.h) */
static inline uint32_t color_to_uint32(v3f_t color) {
uint32_t pixel;
if (color.x > 1.0f) color.x = 1.0f;
if (color.y > 1.0f) color.y = 1.0f;
if (color.z > 1.0f) color.z = 1.0f;
if (color.x < .0f) color.x = .0f;
if (color.y < .0f) color.y = .0f;
if (color.z < .0f) color.z = .0f;
pixel = (uint32_t)(color.x * 255.0f);
pixel <<= 8;
pixel |= (uint32_t)(color.y * 255.0f);
pixel <<= 8;
pixel |= (uint32_t)(color.z * 255.0f);
return pixel;
}
static void draw_line(til_fb_fragment_t *fragment, int x1, int y1, int x2, int y2)
{
int x_delta = x2 - x1;
int y_delta = y2 - y1;
int sdx = x_delta < 0 ? -1 : 1;
int sdy = y_delta < 0 ? -1 : 1;
x_delta = abs(x_delta);
y_delta = abs(y_delta);
if (x_delta >= y_delta) {
/* X-major */
for (int minor = 0, x = 0; x <= x_delta; x++, x1 += sdx, minor += y_delta) {
if (minor >= x_delta) {
y1 += sdy;
minor -= x_delta;
}
til_fb_fragment_put_pixel_checked(fragment, TIL_FB_DRAW_FLAG_TEXTURABLE, x1, y1, 0xffffffff);
}
} else {
/* Y-major */
for (int minor = 0, y = 0; y <= y_delta; y++, y1 += sdy, minor += x_delta) {
if (minor >= y_delta) {
x1 += sdx;
minor -= y_delta;
}
til_fb_fragment_put_pixel_checked(fragment, TIL_FB_DRAW_FLAG_TEXTURABLE, x1, y1, 0xffffffff);
}
}
}
#define ZCONST 3.f
static void draw_polyhedron(const polyhedron_t *polyhedron, m4f_t *transform, til_fb_fragment_t *fragment)
{
unsigned n_faces = polyhedron->edge_cnt - polyhedron->vertex_cnt + 2; // https://en.wikipedia.org/wiki/Euler%27s_polyhedron_formula
unsigned n_verts_per_face = polyhedron->n_vertices / n_faces;
const v3f_t *v = polyhedron->vertices, *_v;
for (unsigned f = 0; f < n_faces; f++) {
_v = v + n_verts_per_face - 1;
for (unsigned i = 0; i < n_verts_per_face; i++, v++) {
int x1, y1, x2, y2;
v3f_t xv, _xv;
_xv = m4f_mult_v3f(transform, _v);
xv = m4f_mult_v3f(transform, v);
x1 = _xv.x / (_xv.z + ZCONST) * fragment->width + fragment->width * .5f;
y1 = _xv.y / (_xv.z + ZCONST) * fragment->height + fragment->height * .5f;
x2 = xv.x / (xv.z + ZCONST) * fragment->width + fragment->width * .5f;
y2 = xv.y / (xv.z + ZCONST) * fragment->height + fragment->height * .5f;
draw_line(fragment, x1, y1, x2, y2);
_v = v;
}
}
}
static til_module_context_t * plato_create_context(unsigned seed, unsigned ticks, unsigned n_cpus, til_setup_t *setup)
{
plato_context_t *ctxt;
ctxt = til_module_context_new(sizeof(plato_context_t), seed, ticks, n_cpus);
if (!ctxt)
return NULL;
return &ctxt->til_module_context;
}
static void plato_render_fragment(til_module_context_t *context, unsigned ticks, unsigned cpu, til_fb_fragment_t *fragment)
{
plato_context_t *ctxt = (plato_context_t *)context;
ctxt->r += (float)(ticks - context->ticks) * .001f;
context->ticks = ticks;
til_fb_fragment_clear(fragment);
for (int i = 0; i < sizeof(polyhedra) / sizeof(*polyhedra); i++) {
m4f_t transform;
float p = (M_PI * 2.f) / 5.f, l;
v3f_t ax;
p *= (float)i;
p -= ctxt->r;
/* tweak the rotation axis */
ax.x = cosf(p);
ax.y = sinf(p);
ax.z = cosf(p) * sinf(p);
/* normalize rotation vector, open-coded here */
l = 1.f/sqrtf(ax.x*ax.x+ax.y*ax.y+ax.z*ax.z);
ax.x *= l;
ax.y *= l;
ax.z *= l;
/* arrange the solids on a circle, at points of a pentagram */
transform = m4f_translate(NULL, &(v3f_t){cosf(p), sinf(p), 0.f});
transform = m4f_scale(&transform, &(v3f_t){.5f, .5f, .5f});
transform = m4f_rotate(&transform, &ax, ctxt->r);
draw_polyhedron(polyhedra[i], &transform, fragment);
}
}
til_module_t plato_module = {
.create_context = plato_create_context,
.render_fragment = plato_render_fragment,
.name = "plato",
.description = "Platonic solids rendered in 3D",
.author = "Vito Caputo <vcaputo@pengaru.com>",
.flags = TIL_MODULE_OVERLAYABLE,
};
|