1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
|
#ifndef _RAY_RENDER_OBJECT_H
#define _RAY_RENDER_OBJECT_H
#include <assert.h>
#include "ray_camera.h"
#include "ray_object.h"
#include "ray_object_type.h"
#include "ray_render_object_plane.h"
#include "ray_render_object_point.h"
#include "ray_render_object_sphere.h"
#include "ray_ray.h"
#include "ray_surface.h"
typedef union ray_render_object_t {
ray_object_type_t type;
ray_render_object_sphere_t sphere;
ray_render_object_point_t point;
ray_render_object_plane_t plane;
} ray_render_object_t;
/* Prepare an object for rendering.
* If the object has any pre-calculating to do, this is where it happens.
* The pre-calculated stuff is object-resident under a _prepared struct member.
*/
static inline ray_render_object_t ray_render_object_prepare(const ray_object_t *object, const ray_camera_t *camera)
{
ray_render_object_t prepared = { .type = object->type };
switch (object->type) {
case RAY_OBJECT_TYPE_SPHERE:
prepared.sphere = ray_render_object_sphere_prepare(&object->sphere, camera);
break;
case RAY_OBJECT_TYPE_POINT:
prepared.point = ray_render_object_point_prepare(&object->point, camera);
break;
case RAY_OBJECT_TYPE_PLANE:
prepared.plane = ray_render_object_plane_prepare(&object->plane, camera);
break;
case RAY_OBJECT_TYPE_LIGHT:
/* TODO */
break;
default:
assert(0);
}
return prepared;
}
/* Determine if a ray intersects object.
* If the object is intersected, store where along the ray the intersection occurs in res_distance.
*/
static inline int ray_render_object_intersects_ray(ray_render_object_t *object, unsigned depth, ray_ray_t *ray, float *res_distance)
{
switch (object->type) {
case RAY_OBJECT_TYPE_SPHERE:
return ray_render_object_sphere_intersects_ray(&object->sphere, depth, ray, res_distance);
case RAY_OBJECT_TYPE_POINT:
return ray_render_object_point_intersects_ray(&object->point, depth, ray, res_distance);
case RAY_OBJECT_TYPE_PLANE:
return ray_render_object_plane_intersects_ray(&object->plane, depth, ray, res_distance);
case RAY_OBJECT_TYPE_LIGHT:
/* TODO */
default:
assert(0);
}
}
/* Return the surface normal of object @ point */
static inline ray_3f_t ray_render_object_normal(ray_render_object_t *object, ray_3f_t *point)
{
switch (object->type) {
case RAY_OBJECT_TYPE_SPHERE:
return ray_render_object_sphere_normal(&object->sphere, point);
case RAY_OBJECT_TYPE_POINT:
return ray_render_object_point_normal(&object->point, point);
case RAY_OBJECT_TYPE_PLANE:
return ray_render_object_plane_normal(&object->plane, point);
case RAY_OBJECT_TYPE_LIGHT:
/* TODO */
default:
assert(0);
}
}
/* Return the surface of object @ point */
static inline ray_surface_t ray_render_object_surface(ray_render_object_t *object, ray_3f_t *point)
{
switch (object->type) {
case RAY_OBJECT_TYPE_SPHERE:
return ray_render_object_sphere_surface(&object->sphere, point);
case RAY_OBJECT_TYPE_POINT:
return ray_render_object_point_surface(&object->point, point);
case RAY_OBJECT_TYPE_PLANE:
return ray_render_object_plane_surface(&object->plane, point);
case RAY_OBJECT_TYPE_LIGHT:
/* TODO */
default:
assert(0);
}
}
#endif
|