summaryrefslogtreecommitdiff
path: root/modules/sparkler/bsp.c
diff options
context:
space:
mode:
authorVito Caputo <vcaputo@gnugeneration.com>2016-12-13 07:51:23 -0800
committerVito Caputo <vcaputo@gnugeneration.com>2016-12-13 07:51:23 -0800
commit8add1663d9a02db2bc65224cdceb480733a81379 (patch)
treefea6aa880a366c007d2b7fdda87c746e6345b301 /modules/sparkler/bsp.c
parentaf49b97cd819cec3a19b1ff5ed6076a0d23f4233 (diff)
sparkler: introduce a particle system
A while ago I made this particle system on SDL, and had the beginnings of an octree implemented within it, but never finished actually using the octree to accelerate the proximity searches. This now has the octree completed and of course more particle interactions now that neighbors could be found more quickly. The simulation somewhat resembles a fireworks display. Every particle is drawn as a single pixel. The visual effect is dominated by spontaneously spawned rockets which explode into thousands of particles accompanied by bursts that thrust particles away from the explosion radially in an expanding sphere resembling a shock wave. When the shock wave happens to strike another rocket, it explodes, resulting in another shock wave. This can produce spectacular chain reactions, so it's worth running for some time and seeing what transpires.
Diffstat (limited to 'modules/sparkler/bsp.c')
-rw-r--r--modules/sparkler/bsp.c556
1 files changed, 556 insertions, 0 deletions
diff --git a/modules/sparkler/bsp.c b/modules/sparkler/bsp.c
new file mode 100644
index 0000000..6544993
--- /dev/null
+++ b/modules/sparkler/bsp.c
@@ -0,0 +1,556 @@
+#include <assert.h>
+#include <stdio.h>
+#include <stdint.h>
+#include <stdlib.h>
+
+#include "bsp.h"
+
+
+/* octree-based bsp for faster proximity searches */
+/* meanings:
+ * octrant = "octo" analog of a quadrant, an octree is a quadtree with an additional dimension (Z/3d)
+ * bv = bounding volume
+ * bsp = binary space partition
+ * occupant = the things being indexed by the bsp (e.g. a particle, or its position)
+ */
+
+
+/* FIXME: these are not tuned at all, and should really all be parameters to bsp_new() instead */
+#define BSP_GROWBY 16
+#define BSP_MAX_OCCUPANTS 64
+#define BSP_MAX_DEPTH 16
+
+#define MAX(_a, _b) (_a > _b ? _a : _b)
+#define MIN(_a, _b) (_a < _b ? _a : _b)
+
+
+struct bsp_node_t {
+ v3f_t center; /* center point about which the bounding volume's 3d-space is divided */
+ bsp_node_t *parent; /* parent bounding volume, NULL when root node */
+ bsp_node_t *octrants; /* NULL when a leaf, otherwise an array of 8 bsp_node_t's */
+ list_head_t occupants; /* list of occupants in this volume when a leaf node */
+ unsigned n_occupants; /* number of ^^ */
+};
+
+
+struct bsp_t {
+ bsp_node_t root;
+ list_head_t free;
+};
+
+
+#define OCTRANTS \
+ octrant(OCT_XL_YL_ZL, (1 << 2 | 1 << 1 | 1)) \
+ octrant(OCT_XR_YL_ZL, ( 1 << 1 | 1)) \
+ octrant(OCT_XL_YR_ZL, (1 << 2 | 1)) \
+ octrant(OCT_XR_YR_ZL, ( 1)) \
+ octrant(OCT_XL_YL_ZR, (1 << 2 | 1 << 1 )) \
+ octrant(OCT_XR_YL_ZR, ( 1 << 1 )) \
+ octrant(OCT_XL_YR_ZR, (1 << 2 )) \
+ octrant(OCT_XR_YR_ZR, 0)
+
+
+#define octrant(_sym, _val) _sym = _val,
+typedef enum _octrant_idx_t {
+ OCTRANTS
+} octrant_idx_t;
+#undef octrant
+
+
+
+static inline const char * octstr(octrant_idx_t oidx)
+{
+#define octrant(_sym, _val) #_sym,
+ static const char *octrant_strs[] = {
+ OCTRANTS
+ };
+#undef octrant
+
+ return octrant_strs[oidx];
+}
+
+
+static inline void _bsp_print(bsp_node_t *node)
+{
+ static int depth = 0;
+
+ fprintf(stderr, "%-*s %i: %p\n", depth, " ", depth, node);
+ if (node->octrants) {
+ int i;
+
+ for (i = 0; i < 8; i++) {
+ fprintf(stderr, "%-*s %i: %s: %p\n", depth, " ", depth, octstr(i), &node->octrants[i]);
+ depth++;
+ _bsp_print(&node->octrants[i]);
+ depth--;
+ }
+ }
+}
+
+
+/* Print a bsp tree to stderr (debugging) */
+void bsp_print(bsp_t *bsp)
+{
+ _bsp_print(&bsp->root);
+}
+
+
+/* Create a new bsp octree. */
+bsp_t * bsp_new(void)
+{
+ bsp_t *bsp;
+
+ bsp = calloc(1, sizeof(bsp_t));
+ if (!bsp) {
+ return NULL;
+ }
+
+ INIT_LIST_HEAD(&bsp->root.occupants);
+ INIT_LIST_HEAD(&bsp->free);
+
+ return bsp;
+}
+
+
+/* Free a bsp octree */
+void bsp_free(bsp_t *bsp)
+{
+ /* TODO: free everything ... */
+ free(bsp);
+}
+
+
+/* bsp lookup state, encapsulated for preservation across composite
+ * lookup-dependent operations, so they can potentially avoid having
+ * to redo the lookup. i.e. lookup caching.
+ */
+typedef struct _bsp_lookup_t {
+ int depth;
+ v3f_t left;
+ v3f_t right;
+ bsp_node_t *bv;
+ octrant_idx_t oidx;
+} bsp_lookup_t;
+
+/* lookup a position's containing leaf node in the bsp tree, store resultant lookup state in *lookup_res */
+static inline void bsp_lookup_position(bsp_node_t *root, v3f_t *position, bsp_lookup_t *lookup_res)
+{
+ bsp_lookup_t res = {
+ .bv = root,
+ .depth = 0,
+ .left = v3f_init(-1.0, -1.0, -1.0), /* TODO: the bsp AABB should be supplied to bsp_new() */
+ .right = v3f_init(1.0, 1.0, 1.0),
+ };
+
+ while (res.bv->octrants) {
+ res.oidx = OCT_XR_YR_ZR;
+ if (position->x <= res.bv->center.x) {
+ res.oidx |= (1 << 2);
+ res.right.x = res.bv->center.x;
+ } else {
+ res.left.x = res.bv->center.x;
+ }
+
+ if (position->y <= res.bv->center.y) {
+ res.oidx |= (1 << 1);
+ res.right.y = res.bv->center.y;
+ } else {
+ res.left.y = res.bv->center.y;
+ }
+
+ if (position->z <= res.bv->center.z) {
+ res.oidx |= 1;
+ res.right.z = res.bv->center.z;
+ } else {
+ res.left.z = res.bv->center.z;
+ }
+
+ res.bv = &res.bv->octrants[res.oidx];
+ res.depth++;
+ }
+
+ *lookup_res = res;
+}
+
+
+/* Add an occupant to a bsp tree, use provided node lookup *l if supplied */
+static inline void _bsp_add_occupant(bsp_t *bsp, bsp_occupant_t *occupant, v3f_t *position, bsp_lookup_t *l)
+{
+ bsp_lookup_t _lookup;
+
+ /* if no cached lookup result was provided, perform the lookup now. */
+ if (!l) {
+ l = &_lookup;
+ bsp_lookup_position(&bsp->root, position, l);
+ }
+
+ assert(l);
+ assert(l->bv);
+
+ occupant->position = position;
+
+#define map_occupant2octrant(_occupant, _bv, _octrant) \
+ _octrant = OCT_XR_YR_ZR; \
+ if (_occupant->position->x <= _bv->center.x) { \
+ _octrant |= (1 << 2); \
+ } \
+ if (_occupant->position->y <= _bv->center.y) { \
+ _octrant |= (1 << 1); \
+ } \
+ if (_occupant->position->z <= _bv->center.z) { \
+ _octrant |= 1; \
+ }
+
+ if (l->bv->n_occupants >= BSP_MAX_OCCUPANTS && l->depth < BSP_MAX_DEPTH) {
+ int i;
+ list_head_t *t, *_t;
+ bsp_node_t *bv = l->bv;
+
+ /* bv is full and shallow enough, subdivide it. */
+
+ /* ensure the free list has something for us */
+ if (list_empty(&bsp->free)) {
+ bsp_node_t *t;
+
+ /* TODO: does using the chunker instead make sense here? */
+ t = calloc(sizeof(bsp_node_t), 8 * BSP_GROWBY);
+ for (i = 0; i < 8 * BSP_GROWBY; i += 8) {
+ list_add(&t[i].occupants, &bsp->free);
+ }
+ }
+
+ /* take an octrants array from the free list */
+ bv->octrants = list_entry(bsp->free.next, bsp_node_t, occupants);
+ list_del(&bv->octrants[0].occupants);
+
+ /* initialize the octrants */
+ for (i = 0; i < 8; i++) {
+ INIT_LIST_HEAD(&bv->octrants[i].occupants);
+ bv->octrants[i].n_occupants = 0;
+ bv->octrants[i].parent = bv;
+ bv->octrants[i].octrants = NULL;
+ }
+
+ /* set the center point in each octrant which places the partitioning hyperplane */
+ /* XXX: note this is pretty unreadable due to reusing the earlier computed values
+ * where the identical computation is required.
+ */
+ bv->octrants[OCT_XR_YR_ZR].center.x = (l->right.x - bv->center.x) / 2 + bv->center.x;
+ bv->octrants[OCT_XR_YR_ZR].center.y = (l->right.y - bv->center.y) / 2 + bv->center.y;
+ bv->octrants[OCT_XR_YR_ZR].center.z = (l->right.z - bv->center.z) / 2 + bv->center.z;
+
+ bv->octrants[OCT_XR_YR_ZL].center.x = bv->octrants[OCT_XR_YR_ZR].center.x;
+ bv->octrants[OCT_XR_YR_ZL].center.y = bv->octrants[OCT_XR_YR_ZR].center.y;
+ bv->octrants[OCT_XR_YR_ZL].center.z = (bv->center.z - l->left.z) / 2 + l->left.z;
+
+ bv->octrants[OCT_XR_YL_ZR].center.x = bv->octrants[OCT_XR_YR_ZR].center.x;
+ bv->octrants[OCT_XR_YL_ZR].center.y = (bv->center.y - l->left.y) / 2 + l->left.y;
+ bv->octrants[OCT_XR_YL_ZR].center.z = bv->octrants[OCT_XR_YR_ZR].center.z;
+
+ bv->octrants[OCT_XR_YL_ZL].center.x = bv->octrants[OCT_XR_YR_ZR].center.x;
+ bv->octrants[OCT_XR_YL_ZL].center.y = bv->octrants[OCT_XR_YL_ZR].center.y;
+ bv->octrants[OCT_XR_YL_ZL].center.z = bv->octrants[OCT_XR_YR_ZL].center.z;
+
+ bv->octrants[OCT_XL_YR_ZR].center.x = (bv->center.x - l->left.x) / 2 + l->left.x;
+ bv->octrants[OCT_XL_YR_ZR].center.y = bv->octrants[OCT_XR_YR_ZR].center.y;
+ bv->octrants[OCT_XL_YR_ZR].center.z = bv->octrants[OCT_XR_YR_ZR].center.z;
+
+ bv->octrants[OCT_XL_YR_ZL].center.x = bv->octrants[OCT_XL_YR_ZR].center.x;
+ bv->octrants[OCT_XL_YR_ZL].center.y = bv->octrants[OCT_XR_YR_ZR].center.y;
+ bv->octrants[OCT_XL_YR_ZL].center.z = bv->octrants[OCT_XR_YR_ZL].center.z;
+
+ bv->octrants[OCT_XL_YL_ZR].center.x = bv->octrants[OCT_XL_YR_ZR].center.x;
+ bv->octrants[OCT_XL_YL_ZR].center.y = bv->octrants[OCT_XR_YL_ZR].center.y;
+ bv->octrants[OCT_XL_YL_ZR].center.z = bv->octrants[OCT_XR_YR_ZR].center.z;
+
+ bv->octrants[OCT_XL_YL_ZL].center.x = bv->octrants[OCT_XL_YR_ZR].center.x;
+ bv->octrants[OCT_XL_YL_ZL].center.y = bv->octrants[OCT_XR_YL_ZR].center.y;
+ bv->octrants[OCT_XL_YL_ZL].center.z = bv->octrants[OCT_XR_YR_ZL].center.z;
+
+ /* migrate the occupants into the appropriate octrants */
+ list_for_each_safe(t, _t, &bv->occupants) {
+ octrant_idx_t oidx;
+ bsp_occupant_t *o = list_entry(t, bsp_occupant_t, occupants);
+
+ map_occupant2octrant(o, bv, oidx);
+ list_move(t, &bv->octrants[oidx].occupants);
+ o->leaf = &bv->octrants[oidx];
+ bv->octrants[oidx].n_occupants++;
+ }
+ bv->n_occupants = 0;
+
+ /* a new leaf assumes the bv position for the occupant to be added into */
+ map_occupant2octrant(occupant, bv, l->oidx);
+ l->bv = &bv->octrants[l->oidx];
+ l->depth++;
+ }
+
+#undef map_occupant2octrant
+
+ occupant->leaf = l->bv;
+ list_add(&occupant->occupants, &l->bv->occupants);
+ l->bv->n_occupants++;
+
+ assert(occupant->leaf);
+}
+
+
+/* add an occupant to a bsp tree */
+void bsp_add_occupant(bsp_t *bsp, bsp_occupant_t *occupant, v3f_t *position)
+{
+ _bsp_add_occupant(bsp, occupant, position, NULL);
+}
+
+
+/* Delete an occupant from a bsp tree.
+ * Set reservation to prevent potentially freeing a node made empty by our delete that
+ * we have a reference to (i.e. a cached lookup result, see bsp_move_occupant()).
+ */
+static inline void _bsp_delete_occupant(bsp_t *bsp, bsp_occupant_t *occupant, bsp_node_t *reservation)
+{
+ if (occupant->leaf->octrants) {
+ fprintf(stderr, "BUG: deleting occupant(%p) from non-leaf bv(%p)\n", occupant, occupant->leaf);
+ }
+
+ /* delete the occupant */
+ list_del(&occupant->occupants);
+ occupant->leaf->n_occupants--;
+
+ if (list_empty(&occupant->leaf->occupants)) {
+ bsp_node_t *parent_bv;
+
+ if (occupant->leaf->n_occupants) {
+ fprintf(stderr, "BUG: bv_occupants empty but n_occupants=%u\n", occupant->leaf->n_occupants);
+ }
+
+ /* leaf is now empty, since nodes are allocated as clusters of 8, they aren't freed unless all nodes in the cluster are empty.
+ * Determine if they're all empty, and free the parent's octrants as a set.
+ * Repeat this process up the chain of parents, repeatedly converting empty parents into leaf nodes.
+ * TODO: maybe just use the chunker instead?
+ */
+
+ for (parent_bv = occupant->leaf->parent; parent_bv && parent_bv != reservation; parent_bv = parent_bv->parent) {
+ int i;
+
+ /* are _all_ the parent's octrants freeable? */
+ for (i = 0; i < 8; i++) {
+ if (&parent_bv->octrants[i] == reservation ||
+ parent_bv->octrants[i].octrants ||
+ !list_empty(&parent_bv->octrants[i].occupants)) {
+ goto _out;
+ }
+ }
+
+ /* "freeing" really just entails putting the octrants cluster of nodes onto the free list */
+ list_add(&parent_bv->octrants[0].occupants, &bsp->free);
+ parent_bv->octrants = NULL;
+ }
+ }
+
+_out:
+ occupant->leaf = NULL;
+}
+
+
+/* Delete an occupant from a bsp tree. */
+void bsp_delete_occupant(bsp_t *bsp, bsp_occupant_t *occupant)
+{
+ _bsp_delete_occupant(bsp, occupant, NULL);
+}
+
+
+/* Move an occupant within a bsp tree to a new position */
+void bsp_move_occupant(bsp_t *bsp, bsp_occupant_t *occupant, v3f_t *position)
+{
+ bsp_lookup_t lookup_res;
+
+ if (v3f_equal(occupant->position, position)) {
+ return;
+ }
+
+ bsp_lookup_position(&bsp->root, occupant->position, &lookup_res);
+ if (lookup_res.bv == occupant->leaf) {
+ /* leaf unchanged, do nothing past lookup. */
+ occupant->position = position;
+ return;
+ }
+
+ _bsp_delete_occupant(bsp, occupant, lookup_res.bv);
+ _bsp_add_occupant(bsp, occupant, position, &lookup_res);
+}
+
+
+static inline float square(float v)
+{
+ return v * v;
+}
+
+
+typedef enum overlaps_t {
+ OVERLAPS_NONE, /* objects are completely separated */
+ OVERLAPS_PARTIALLY, /* objects surfaces one another */
+ OVERLAPS_A_IN_B, /* first object is fully within the second */
+ OVERLAPS_B_IN_A, /* second object is fully within the first */
+} overlaps_t;
+
+
+/* Returns wether the axis-aligned bounding box (AABB) overlaps the sphere.
+ * Absolute vs. partial overlaps are distinguished, since it's an important optimization
+ * to know if the sphere falls entirely within one partition of the octree.
+ */
+static inline overlaps_t aabb_overlaps_sphere(v3f_t *aabb_min, v3f_t *aabb_max, v3f_t *sphere_center, float sphere_radius)
+{
+ /* This implementation is based on James Arvo's from Graphics Gems pg. 335 */
+ float r2 = square(sphere_radius);
+ float dface = INFINITY;
+ float dmin = 0;
+ float dmax = 0;
+ float a, b;
+
+#define per_dimension(_center, _box_max, _box_min) \
+ a = square(_center - _box_min); \
+ b = square(_center - _box_max); \
+ \
+ dmax += MAX(a, b); \
+ if (_center >= _box_min && _center <= _box_max) { \
+ /* sphere center within box */ \
+ dface = MIN(dface, MIN(a, b)); \
+ } else { \
+ /* sphere center outside the box */ \
+ dface = 0; \
+ dmin += MIN(a, b); \
+ }
+
+ per_dimension(sphere_center->x, aabb_max->x, aabb_min->x);
+ per_dimension(sphere_center->y, aabb_max->y, aabb_min->y);
+ per_dimension(sphere_center->z, aabb_max->z, aabb_min->z);
+
+ if (dmax < r2) {
+ /* maximum distance to box smaller than radius, box is inside
+ * the sphere */
+ return OVERLAPS_A_IN_B;
+ }
+
+ if (dface > r2) {
+ /* sphere center is within box (non-zero dface), and dface is
+ * greater than sphere diameter, sphere is inside the box. */
+ return OVERLAPS_B_IN_A;
+ }
+
+ if (dmin <= r2) {
+ /* minimum distance from sphere center to box is smaller than
+ * sphere's radius, surfaces intersect */
+ return OVERLAPS_PARTIALLY;
+ }
+
+ return OVERLAPS_NONE;
+}
+
+
+typedef struct bsp_search_sphere_t {
+ v3f_t *center;
+ float radius_min;
+ float radius_max;
+ void (*cb)(bsp_t *, list_head_t *, void *);
+ void *cb_data;
+} bsp_search_sphere_t;
+
+
+static overlaps_t _bsp_search_sphere(bsp_t *bsp, bsp_node_t *node, bsp_search_sphere_t *search, v3f_t *aabb_min, v3f_t *aabb_max)
+{
+ overlaps_t res;
+ v3f_t oaabb_min, oaabb_max;
+
+ /* if the radius_max search doesn't overlap aabb_min:aabb_max at all, simply return. */
+ res = aabb_overlaps_sphere(aabb_min, aabb_max, search->center, search->radius_max);
+ if (res == OVERLAPS_NONE) {
+ return res;
+ }
+
+ /* if the radius_max absolutely overlaps the AABB, we must see if the AABB falls entirely within radius_min so we can skip it. */
+ if (res == OVERLAPS_A_IN_B) {
+ res = aabb_overlaps_sphere(aabb_min, aabb_max, search->center, search->radius_min);
+ if (res == OVERLAPS_A_IN_B) {
+ /* AABB is entirely within radius_min, skip it. */
+ return OVERLAPS_NONE;
+ }
+
+ if (res == OVERLAPS_NONE) {
+ /* radius_min didn't overlap, radius_max overlapped aabb 100%, it's entirely within the range. */
+ res = OVERLAPS_A_IN_B;
+ } else {
+ /* radius_min overlapped partially.. */
+ res = OVERLAPS_PARTIALLY;
+ }
+ }
+
+ /* if node is a leaf, call search->cb with the occupants, then return. */
+ if (!node->octrants) {
+ search->cb(bsp, &node->occupants, search->cb_data);
+ return res;
+ }
+
+ /* node is a parent, recur on each octrant with appropriately adjusted aabb_min:aabb_max values */
+ /* if any of the octrants absolutely overlaps the search sphere, skip the others by returning. */
+#define search_octrant(_oid, _aabb_min, _aabb_max) \
+ res = _bsp_search_sphere(bsp, &node->octrants[_oid], search, _aabb_min, _aabb_max); \
+ if (res == OVERLAPS_B_IN_A) { \
+ return res; \
+ }
+
+ /* OCT_XL_YL_ZL and OCT_XR_YR_ZR AABBs don't require tedious composition */
+ search_octrant(OCT_XL_YL_ZL, aabb_min, &node->center);
+ search_octrant(OCT_XR_YR_ZR, &node->center, aabb_max);
+
+ /* the rest are stitched together requiring temp storage and tedium */
+ v3f_set(&oaabb_min, node->center.x, aabb_min->y, aabb_min->z);
+ v3f_set(&oaabb_max, aabb_max->x, node->center.y, node->center.z);
+ search_octrant(OCT_XR_YL_ZL, &oaabb_min, &oaabb_max);
+
+ v3f_set(&oaabb_min, aabb_min->x, node->center.y, aabb_min->z);
+ v3f_set(&oaabb_max, node->center.x, aabb_max->y, node->center.z);
+ search_octrant(OCT_XL_YR_ZL, &oaabb_min, &oaabb_max);
+
+ v3f_set(&oaabb_min, node->center.x, node->center.y, aabb_min->z);
+ v3f_set(&oaabb_max, aabb_max->x, aabb_max->y, node->center.z);
+ search_octrant(OCT_XR_YR_ZL, &oaabb_min, &oaabb_max);
+
+ v3f_set(&oaabb_min, aabb_min->x, aabb_min->y, node->center.z);
+ v3f_set(&oaabb_max, node->center.x, node->center.y, aabb_max->z);
+ search_octrant(OCT_XL_YL_ZR, &oaabb_min, &oaabb_max);
+
+ v3f_set(&oaabb_min, node->center.x, aabb_min->y, node->center.z);
+ v3f_set(&oaabb_max, aabb_max->x, node->center.y, aabb_max->z);
+ search_octrant(OCT_XR_YL_ZR, &oaabb_min, &oaabb_max);
+
+ v3f_set(&oaabb_min, aabb_min->x, node->center.y, node->center.z);
+ v3f_set(&oaabb_max, node->center.x, aabb_max->y, aabb_max->z);
+ search_octrant(OCT_XL_YR_ZR, &oaabb_min, &oaabb_max);
+
+#undef search_octrant
+
+ /* since early on an OVERLAPS_NONE short-circuits the function, and
+ * OVERLAPS_ABSOLUTE also causes short-circuits, if we arrive here it's
+ * a partial overlap
+ */
+ return OVERLAPS_PARTIALLY;
+}
+
+
+/* search the bsp tree for leaf nodes which intersect the space between radius_min and radius_max of a sphere @ center */
+/* for every leaf node found to intersect the sphere, cb is called with the leaf node's occupants list head */
+/* the callback cb must then further filter the occupants as necessary. */
+void bsp_search_sphere(bsp_t *bsp, v3f_t *center, float radius_min, float radius_max, void (*cb)(bsp_t *, list_head_t *, void *), void *cb_data)
+{
+ bsp_search_sphere_t search = {
+ .center = center,
+ .radius_min = radius_min,
+ .radius_max = radius_max,
+ .cb = cb,
+ .cb_data = cb_data,
+ };
+ v3f_t aabb_min = v3f_init(-1.0f, -1.0f, -1.0f);
+ v3f_t aabb_max = v3f_init(1.0f, 1.0f, 1.0f);
+
+ _bsp_search_sphere(bsp, &bsp->root, &search, &aabb_min, &aabb_max);
+}
© All Rights Reserved