1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
|
#include <math.h>
#include <stdlib.h>
#include <sys/types.h>
#include <time.h>
#include <unistd.h>
#include "til.h"
#include "til_fb.h"
#include "draw.h"
/* Copyright (C) 2020 Philip J. Freeman <elektron@halo.nu> */
/*
Spirograph Emulator
refs:
- https://en.wikipedia.org/wiki/Spirograph#Mathematical_basis
- https://en.wikipedia.org/wiki/Unit_circle#Trigonometric_functions_on_the_unit_circle
*/
typedef struct spiro_context_t {
float r;
int r_dir;
float p;
int p_dir;
} spiro_context_t;
static void * spiro_create_context(unsigned ticks, unsigned num_cpus, void *setup)
{
spiro_context_t *ctxt;
float z;
ctxt = malloc(sizeof(spiro_context_t));
if (!ctxt)
return NULL;
srand(ticks + getpid());
ctxt->r=.25f+(rand()/(float)RAND_MAX)*.5f;
if(ctxt->r>.5f)
ctxt->r_dir=-1;
else
ctxt->r_dir=1;
ctxt->p=(rand()/(float)RAND_MAX)*ctxt->r;
ctxt->p_dir=ctxt->r_dir*-1;
#ifdef DEBUG
printf("spiro: initial context: r=%f, dir=%i, p=%f, dir=%i\n", ctxt->r, ctxt->r_dir, ctxt->p, ctxt->p_dir);
#endif
return ctxt;
}
static void spiro_destroy_context(void *context)
{
spiro_context_t *ctxt = context;
free(context);
}
static void spiro_render_fragment(void *context, unsigned ticks, unsigned cpu, til_fb_fragment_t *fragment)
{
spiro_context_t *ctxt = context;
int width = fragment->width, height = fragment->height;
int display_R, display_origin_x, display_origin_y;
/* Based on the fragment's dimensions, calculate the origin and radius of the fixed outer
circle, C0. */
if(width>=height) { // landscape or square aspect ratio
display_R=(height-1)*0.5f;
display_origin_x=((width-height)*.5f)+display_R;
display_origin_y=display_R;
} else { // portrait
display_R=(width-1)*.5f;
display_origin_x=display_R;
display_origin_y=((height-width)*.5f)+display_R;
}
/* blank the fragment */
til_fb_fragment_zero(fragment);
/* plot one spirograph run */
float l=ctxt->p/ctxt->r;
float k=ctxt->r;
for(float t=0.f; t<128*2*M_PI; t+= M_PI/display_R) {
float my_x=((1.f-k)*cosf(t))+(l*k*cosf(((1.f-k)/k)*t));
float my_y=((1.f-k)*sinf(t))-(l*k*sinf(((1.f-k)/k)*t));
int pos_x=display_origin_x+(my_x*display_R);
int pos_y=display_origin_y+(my_y*display_R);
til_fb_fragment_put_pixel_unchecked(fragment, pos_x, pos_y,
makergb(sinf(M_1_PI*t)*127+128,
sinf(M_1_PI*t+(2*M_PI*.333333333333f))*127+128,
sinf(M_1_PI*t+(4*M_PI*.333333333333f))*127+128,
0.76));
}
#ifdef DEBUG
/* plot the origin point */
til_fb_fragment_put_pixel_unchecked(fragment, display_origin_x, display_origin_y,
makergb(0xFF, 0xFF, 0x00, 1));
/* plot the fixed outer circle C0 */
for(float a=0.f; a<2*M_PI; a+= M_PI_2/display_R) {
int pos_x=display_origin_x+(cosf(a)*display_R);
int pos_y=display_origin_y+(sinf(a)*display_R);
til_fb_fragment_put_pixel_unchecked(fragment, pos_x, pos_y,
makergb(0xFF, 0xFF, 0x00, 1));
}
/* plot inner circle Ci */
til_fb_fragment_put_pixel_unchecked(fragment, display_origin_x+display_R-(ctxt->r*display_R),
display_origin_y, makergb(0xFF, 0xFF, 0x00, 1));
for(float a=0.f; a<2*M_PI; a+= M_PI_2/display_R) {
int pos_x=display_origin_x+display_R-(ctxt->r*display_R)+
(cosf(a)*ctxt->r*display_R);
int pos_y=display_origin_y+(sinf(a)*ctxt->r*display_R);
til_fb_fragment_put_pixel_unchecked(fragment, pos_x, pos_y,
makergb(0xFF, 0xFF, 0x00, 1));
}
/* plot p */
til_fb_fragment_put_pixel_unchecked(fragment, display_origin_x+display_R-(ctxt->r*display_R)+
(ctxt->p*display_R), display_origin_y, makergb(0xFF, 0xFF, 0x00, 1));
#endif
/* check bounds and increment r & p */
float next_r=ctxt->r+(.00001f*ctxt->r_dir);
if(next_r >= 1.f || next_r <= 0.f || next_r <= ctxt->p)
ctxt->r_dir=ctxt->r_dir*-1;
else
ctxt->r=ctxt->r+(.00001f*ctxt->r_dir);
float next_p=ctxt->p+(.0003f*ctxt->p_dir);
if(next_p >= ctxt->r || next_p <= 0)
ctxt->p_dir=ctxt->p_dir*-1;
else
ctxt->p=ctxt->p+(.0003f*ctxt->p_dir);
}
til_module_t spiro_module = {
.create_context = spiro_create_context,
.destroy_context = spiro_destroy_context,
.render_fragment = spiro_render_fragment,
.name = "spiro",
.description = "Spirograph emulator",
.author = "Philip J Freeman <elektron@halo.nu>",
};
|