1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
|
#include <stdint.h>
#include <inttypes.h>
#include <math.h>
#include <stdlib.h>
#include "til.h"
#include "til_fb.h"
#include "til_module_context.h"
/* Copyright (C) 2016 Vito Caputo <vcaputo@pengaru.com> */
/* Some defines for the fixed-point stuff in render(). */
#define FIXED_TRIG_LUT_SIZE 4096 /* size of the cos/sin look-up tables */
#define FIXED_BITS 11 /* fractional bits */
#define FIXED_EXP (1 << FIXED_BITS) /* 2^FIXED_BITS */
#define FIXED_MASK (FIXED_EXP - 1) /* fractional part mask */
#define FIXED_COS(_rad) roto_costab[(_rad) % FIXED_TRIG_LUT_SIZE]
#define FIXED_SIN(_rad) roto_sintab[(_rad) % FIXED_TRIG_LUT_SIZE]
#define FIXED_MULT(_a, _b) (((_a) * (_b)) >> FIXED_BITS)
#define FIXED_NEW(_i) ((_i) << FIXED_BITS)
#define FIXED_TO_INT(_f) ((_f) >> FIXED_BITS)
#define ROTO_TEXTURE_SIZE 256
#define ROTO_DEFAULT_FILL_MODULE "none"
typedef struct color_t {
int r, g, b;
} color_t;
typedef struct roto_context_t {
til_module_context_t til_module_context;
unsigned r, rr;
color_t palette[2];
til_module_context_t *fill_module_context;
til_fb_fragment_t fill_fb;
} roto_context_t;
typedef struct roto_setup_t {
til_setup_t til_setup;
til_setup_t *fill_module_setup;
} roto_setup_t;
static int32_t roto_costab[FIXED_TRIG_LUT_SIZE], roto_sintab[FIXED_TRIG_LUT_SIZE];
static uint8_t roto_texture[ROTO_TEXTURE_SIZE][ROTO_TEXTURE_SIZE];
static void init_roto(uint8_t texture[ROTO_TEXTURE_SIZE][ROTO_TEXTURE_SIZE], int32_t *roto_costab, int32_t *roto_sintab)
{
int x, y, i;
/* Generate simple checker pattern texture, nothing clever, feel free to play! */
/* If you modify texture on every frame instead of only @ initialization you can
* produce some neat output. These values are indexed into palette[] below. */
for (y = 0; y < ROTO_TEXTURE_SIZE >> 1; y++) {
for (x = 0; x < ROTO_TEXTURE_SIZE >> 1; x++)
texture[y][x] = 1;
for (; x < ROTO_TEXTURE_SIZE; x++)
texture[y][x] = 0;
}
for (; y < ROTO_TEXTURE_SIZE; y++) {
for (x = 0; x < ROTO_TEXTURE_SIZE >> 1; x++)
texture[y][x] = 0;
for (; x < ROTO_TEXTURE_SIZE; x++)
texture[y][x] = 1;
}
/* Generate fixed-point cos & sin LUTs. */
for (i = 0; i < FIXED_TRIG_LUT_SIZE; i++) {
roto_costab[i] = ((cos((double)2*M_PI*i/FIXED_TRIG_LUT_SIZE))*FIXED_EXP);
roto_sintab[i] = ((sin((double)2*M_PI*i/FIXED_TRIG_LUT_SIZE))*FIXED_EXP);
}
}
static til_module_context_t * roto_create_context(const til_module_t *module, til_stream_t *stream, unsigned seed, unsigned ticks, unsigned n_cpus, til_setup_t *setup)
{
static int initialized;
roto_context_t *ctxt;
if (!initialized) {
initialized = 1;
init_roto(roto_texture, roto_costab, roto_sintab);
}
ctxt = til_module_context_new(module, sizeof(roto_context_t), stream, seed, ticks, n_cpus, setup);
if (!ctxt)
return NULL;
if (((roto_setup_t *)setup)->fill_module_setup) {
const til_module_t *module = ((roto_setup_t *)setup)->fill_module_setup->creator;
if (til_module_create_contexts(module,
stream,
seed,
ticks,
n_cpus,
((roto_setup_t *)setup)->fill_module_setup,
1,
&ctxt->fill_module_context) < 0)
return til_module_context_free(&ctxt->til_module_context);
ctxt->fill_fb = (til_fb_fragment_t){
.buf = malloc(ROTO_TEXTURE_SIZE * ROTO_TEXTURE_SIZE * sizeof(uint32_t)),
.frame_width = ROTO_TEXTURE_SIZE,
.frame_height = ROTO_TEXTURE_SIZE,
.width = ROTO_TEXTURE_SIZE,
.height = ROTO_TEXTURE_SIZE,
.pitch = ROTO_TEXTURE_SIZE,
};
if (!ctxt->fill_fb.buf)
return til_module_context_free(&ctxt->til_module_context);
}
ctxt->r = rand_r(&seed);
ctxt->rr = rand_r(&seed);
return &ctxt->til_module_context;
}
static void roto_destroy_context(til_module_context_t *context)
{
roto_context_t *ctxt = (roto_context_t *)context;
free(ctxt->fill_fb.buf);
til_module_context_free(ctxt->fill_module_context);
free(ctxt);
}
/* linearly interpolate between two colors, alpha is fixed-point value 0-FIXED_EXP. */
static inline color_t lerp_color(color_t *a, color_t *b, int alpha)
{
/* TODO: This could be done without multiplies with a bit of effort,
* maybe a simple table mapping integer color deltas to shift values
* for shifting alpha which then gets simply added? A table may not even
* be necessary, use the order of the delta to derive how much to shift
* alpha?
*/
color_t c = {
.r = a->r + FIXED_MULT(alpha, b->r - a->r),
.g = a->g + FIXED_MULT(alpha, b->g - a->g),
.b = a->b + FIXED_MULT(alpha, b->b - a->b),
};
return c;
}
/* Return the bilinearly interpolated color palette[texture[ty][tx]] (Anti-Aliasing) */
/* tx, ty are fixed-point for fractions, palette colors are also in fixed-point format. */
static uint32_t bilerp_color(uint8_t texture[ROTO_TEXTURE_SIZE][ROTO_TEXTURE_SIZE], color_t *palette, int tx, int ty)
{
uint8_t itx = FIXED_TO_INT(tx), ity = FIXED_TO_INT(ty);
color_t n_color, s_color, color;
int x_alpha, y_alpha;
uint8_t nw, ne, sw, se;
/* We need the 4 texels constituting a 2x2 square pattern to interpolate.
* A point tx,ty can only intersect one texel; one corner of the 2x2 square.
* Where relative to the corner's center the intersection occurs determines which corner has been intersected,
* and the other corner texels may then be addressed relative to that corner.
* Alpha values must also be determined for both axis, these values describe the position between
* the 2x2 texel centers the intersection occurred, aka the weight or bias.
* Once the two alpha values are known, linear interpolation between the texel colors is trivial.
*/
if ((ty & FIXED_MASK) > (FIXED_EXP >> 1)) {
y_alpha = ty & (FIXED_MASK >> 1);
if ((tx & (FIXED_MASK)) > (FIXED_EXP >> 1)) {
nw = texture[ity][itx];
ne = texture[ity][(uint8_t)(itx + 1)];
sw = texture[(uint8_t)(ity + 1)][itx];
se = texture[(uint8_t)(ity + 1)][(uint8_t)(itx + 1)];
x_alpha = tx & (FIXED_MASK >> 1);
} else {
ne = texture[ity][itx];
nw = texture[ity][(uint8_t)(itx - 1)];
se = texture[(uint8_t)(ity + 1)][itx];
sw = texture[(uint8_t)(ity + 1)][(uint8_t)(itx - 1)];
x_alpha = (FIXED_EXP >> 1) + (tx & (FIXED_MASK >> 1));
}
} else {
y_alpha = (FIXED_EXP >> 1) + (ty & (FIXED_MASK >> 1));
if ((tx & (FIXED_MASK)) > (FIXED_EXP >> 1)) {
sw = texture[ity][itx];
se = texture[ity][(uint8_t)(itx + 1)];
nw = texture[(uint8_t)(ity - 1)][itx];
ne = texture[(uint8_t)(ity - 1)][(uint8_t)(itx + 1)];
x_alpha = tx & (FIXED_MASK >> 1);
} else {
se = texture[ity][itx];
sw = texture[ity][(uint8_t)(itx - 1)];
ne = texture[(uint8_t)(ity - 1)][itx];
nw = texture[(uint8_t)(ity - 1)][(uint8_t)(itx - 1)];
x_alpha = (FIXED_EXP >> 1) + (tx & (FIXED_MASK >> 1));
}
}
/* Skip interpolation of same colors, a substantial optimization with plain textures like the checker pattern */
if (nw == ne) {
if (ne == sw && sw == se)
return (FIXED_TO_INT(palette[sw].r) << 16) | (FIXED_TO_INT(palette[sw].g) << 8) | FIXED_TO_INT(palette[sw].b);
n_color = palette[nw];
} else {
n_color = lerp_color(&palette[nw], &palette[ne], x_alpha);
}
if (sw == se) {
s_color = palette[sw];
} else {
s_color = lerp_color(&palette[sw], &palette[se], x_alpha);
}
color = lerp_color(&n_color, &s_color, y_alpha);
return (FIXED_TO_INT(color.r) << 16) | (FIXED_TO_INT(color.g) << 8) | FIXED_TO_INT(color.b);
}
static inline color_t * pixel32_to_color(uint32_t pixel, color_t *res_color)
{
*res_color = (color_t){
.r = FIXED_NEW((pixel >> 16) & 0xff),
.g = FIXED_NEW((pixel >> 8) & 0xff),
.b = FIXED_NEW((pixel) & 0xff),
};
return res_color;
}
/* Return the bilinearly interpolated color palette[texture[ty][tx]] (Anti-Aliasing) */
/* tx, ty are fixed-point for fractions, palette colors are also in fixed-point format. */
static uint32_t bilerp_color_pixel32(uint32_t texture[ROTO_TEXTURE_SIZE][ROTO_TEXTURE_SIZE], int tx, int ty)
{
uint8_t itx = FIXED_TO_INT(tx), ity = FIXED_TO_INT(ty);
color_t n_color, s_color, color;
int x_alpha, y_alpha;
uint32_t nw, ne, sw, se;
/* We need the 4 texels constituting a 2x2 square pattern to interpolate.
* A point tx,ty can only intersect one texel; one corner of the 2x2 square.
* Where relative to the corner's center the intersection occurs determines which corner has been intersected,
* and the other corner texels may then be addressed relative to that corner.
* Alpha values must also be determined for both axis, these values describe the position between
* the 2x2 texel centers the intersection occurred, aka the weight or bias.
* Once the two alpha values are known, linear interpolation between the texel colors is trivial.
*/
if ((ty & FIXED_MASK) > (FIXED_EXP >> 1)) {
y_alpha = ty & (FIXED_MASK >> 1);
if ((tx & (FIXED_MASK)) > (FIXED_EXP >> 1)) {
nw = texture[ity][itx];
ne = texture[ity][(uint8_t)(itx + 1)];
sw = texture[(uint8_t)(ity + 1)][itx];
se = texture[(uint8_t)(ity + 1)][(uint8_t)(itx + 1)];
x_alpha = tx & (FIXED_MASK >> 1);
} else {
ne = texture[ity][itx];
nw = texture[ity][(uint8_t)(itx - 1)];
se = texture[(uint8_t)(ity + 1)][itx];
sw = texture[(uint8_t)(ity + 1)][(uint8_t)(itx - 1)];
x_alpha = (FIXED_EXP >> 1) + (tx & (FIXED_MASK >> 1));
}
} else {
y_alpha = (FIXED_EXP >> 1) + (ty & (FIXED_MASK >> 1));
if ((tx & (FIXED_MASK)) > (FIXED_EXP >> 1)) {
sw = texture[ity][itx];
se = texture[ity][(uint8_t)(itx + 1)];
nw = texture[(uint8_t)(ity - 1)][itx];
ne = texture[(uint8_t)(ity - 1)][(uint8_t)(itx + 1)];
x_alpha = tx & (FIXED_MASK >> 1);
} else {
se = texture[ity][itx];
sw = texture[ity][(uint8_t)(itx - 1)];
ne = texture[(uint8_t)(ity - 1)][itx];
nw = texture[(uint8_t)(ity - 1)][(uint8_t)(itx - 1)];
x_alpha = (FIXED_EXP >> 1) + (tx & (FIXED_MASK >> 1));
}
}
/* Skip interpolation of same colors, a substantial optimization with plain textures like the checker pattern */
if (nw == ne) {
if (ne == sw && sw == se)
return sw;
pixel32_to_color(nw, &n_color);
} else {
n_color = lerp_color(pixel32_to_color(nw, &(color_t){}),
pixel32_to_color(ne, &(color_t){}),
x_alpha);
}
if (sw == se) {
pixel32_to_color(sw, &s_color);
} else {
s_color = lerp_color(pixel32_to_color(sw, &(color_t){}),
pixel32_to_color(se, &(color_t){}),
x_alpha);
}
color = lerp_color(&n_color, &s_color, y_alpha);
return (FIXED_TO_INT(color.r) << 16) | (FIXED_TO_INT(color.g) << 8) | FIXED_TO_INT(color.b);
}
/* prepare a frame for concurrent rendering */
static void roto_prepare_frame(til_module_context_t *context, til_stream_t *stream, unsigned ticks, til_fb_fragment_t **fragment_ptr, til_frame_plan_t *res_frame_plan)
{
roto_context_t *ctxt = (roto_context_t *)context;
*res_frame_plan = (til_frame_plan_t){ .fragmenter = til_fragmenter_slice_per_cpu_x16 };
if (ticks != context->last_ticks) {
/* This governs the rotation and color cycle. */
ctxt->r += FIXED_TO_INT(FIXED_MULT(FIXED_SIN(ctxt->rr), FIXED_NEW(16)));
ctxt->rr += (ticks - context->last_ticks) >> 2;
/* Vary the colors, this is just a mashup of sinusoidal rgb values. */
ctxt->palette[0].r = (FIXED_MULT(FIXED_COS(ctxt->rr), FIXED_NEW(127)) + FIXED_NEW(128));
ctxt->palette[0].g = (FIXED_MULT(FIXED_SIN(ctxt->rr / 2), FIXED_NEW(127)) + FIXED_NEW(128));
ctxt->palette[0].b = (FIXED_MULT(FIXED_COS(ctxt->rr / 3), FIXED_NEW(127)) + FIXED_NEW(128));
ctxt->palette[1].r = (FIXED_MULT(FIXED_SIN(ctxt->rr / 2), FIXED_NEW(127)) + FIXED_NEW(128));
ctxt->palette[1].g = (FIXED_MULT(FIXED_COS(ctxt->rr / 2), FIXED_NEW(127)) + FIXED_NEW(128));
ctxt->palette[1].b = (FIXED_MULT(FIXED_SIN(ctxt->rr), FIXED_NEW(127)) + FIXED_NEW(128));
if (ctxt->fill_module_context) {
til_fb_fragment_t *fb_ptr = &ctxt->fill_fb;
ctxt->fill_fb.cleared = 0;
til_module_render(ctxt->fill_module_context, stream, ticks, &fb_ptr);
}
}
}
/* Draw a rotating checkered 256x256 texture into fragment. */
static void roto_render_fragment(til_module_context_t *context, til_stream_t *stream, unsigned ticks, unsigned cpu, til_fb_fragment_t **fragment_ptr)
{
roto_context_t *ctxt = (roto_context_t *)context;
til_fb_fragment_t *fragment = *fragment_ptr;
int frame_width = fragment->frame_width, frame_height = fragment->frame_height;
int y_cos_r, y_sin_r, x_cos_r, x_sin_r, x_cos_r_init, x_sin_r_init, cos_r, sin_r;
uint32_t *buf = fragment->buf;
/* This is all done using fixed-point in the hopes of being faster, and yes assumptions
* are being made WRT the overflow of tx/ty as well, only tested on x86_64. */
cos_r = FIXED_COS(ctxt->r);
sin_r = FIXED_SIN(ctxt->r);
/* The dimensions are cut in half and negated to center the rotation. */
/* The [xy]_{sin,cos}_r variables are accumulators to replace multiplication with addition. */
x_cos_r_init = FIXED_MULT(-FIXED_NEW(frame_width / 2) + FIXED_NEW(fragment->x), cos_r);
x_sin_r_init = FIXED_MULT(-FIXED_NEW(frame_width / 2) + FIXED_NEW(fragment->x), sin_r);
y_cos_r = FIXED_MULT(-FIXED_NEW(frame_height / 2) + FIXED_NEW(fragment->y), cos_r);
y_sin_r = FIXED_MULT(-FIXED_NEW(frame_height / 2) + FIXED_NEW(fragment->y), sin_r);
for (int y = 0; y < fragment->height; y++) {
x_cos_r = x_cos_r_init;
x_sin_r = x_sin_r_init;
if (ctxt->fill_module_context) {
for (int x = 0; x < fragment->width; x++, buf++) {
/* TODO: it would be interesting to support an overlay mode where we alpha blend this into the existing surface,
* so fill_modules that were overlayable would overlay in the rotated+tiled form...
*/
*buf = bilerp_color_pixel32((uint32_t (*)[ROTO_TEXTURE_SIZE])ctxt->fill_fb.buf, x_sin_r - y_cos_r, y_sin_r + x_cos_r);
x_cos_r += cos_r;
x_sin_r += sin_r;
}
} else {
for (int x = 0; x < fragment->width; x++, buf++) {
*buf = bilerp_color(roto_texture, ctxt->palette, x_sin_r - y_cos_r, y_sin_r + x_cos_r);
x_cos_r += cos_r;
x_sin_r += sin_r;
}
}
buf += fragment->stride;
y_cos_r += cos_r;
y_sin_r += sin_r;
}
}
static void roto_setup_free(til_setup_t *setup)
{
roto_setup_t *s = (roto_setup_t *)setup;
if (s) {
til_setup_free(s->fill_module_setup);
free(setup);
}
}
static int roto_fill_module_setup(const til_settings_t *settings, til_setting_t **res_setting, const til_setting_desc_t **res_desc, til_setup_t **res_setup)
{
return til_module_setup_full(settings,
res_setting,
res_desc,
res_setup,
"Fill module name",
ROTO_DEFAULT_FILL_MODULE,
(TIL_MODULE_EXPERIMENTAL | TIL_MODULE_HERMETIC),
NULL);
}
static int roto_setup(const til_settings_t *settings, til_setting_t **res_setting, const til_setting_desc_t **res_desc, til_setup_t **res_setup);
til_module_t roto_module = {
.create_context = roto_create_context,
.destroy_context = roto_destroy_context,
.prepare_frame = roto_prepare_frame,
.render_fragment = roto_render_fragment,
.setup = roto_setup,
.name = "roto",
.description = "Anti-aliased tiled texture rotation (threaded)",
.author = "Vito Caputo <vcaputo@pengaru.com>",
};
static int roto_setup(const til_settings_t *settings, til_setting_t **res_setting, const til_setting_desc_t **res_desc, til_setup_t **res_setup)
{
til_setting_t *fill_module;
const til_settings_t *fill_module_settings;
const char *fill_module_values[] = {
"none",
"blinds",
"checkers",
"moire",
"pixbounce",
"plato",
"roto",
"shapes",
"spiro",
"stars",
NULL
};
int r;
r = til_settings_get_and_describe_setting(settings,
&(til_setting_spec_t){
.name = "Filled module (\"none\" for classic roto)",
.key = "fill_module",
.preferred = fill_module_values[0],
.values = fill_module_values,
.annotations = NULL,
.as_nested_settings = 1,
},
&fill_module, /* XXX: this isn't really of direct use now that it's a potentially full-blown settings string, see fill_module_settings */
res_setting,
res_desc);
if (r)
return r;
fill_module_settings = fill_module->value_as_nested_settings;
assert(fill_module_settings);
r = roto_fill_module_setup(fill_module_settings,
res_setting,
res_desc,
NULL); /* XXX: note no res_setup, must defer finalize */
if (r)
return r;
if (res_setup) {
roto_setup_t *setup;
setup = til_setup_new(settings, sizeof(*setup), roto_setup_free, &roto_module);
if (!setup)
return -ENOMEM;
r = roto_fill_module_setup(fill_module_settings,
res_setting,
res_desc,
&setup->fill_module_setup); /* finalize! */
if (r < 0)
return til_setup_free_with_ret_err(&setup->til_setup, r);
assert(r == 0);
*res_setup = &setup->til_setup;
}
return 0;
}
|