blob: aadda189823a1fdde4a91beb964500beaccf9c5c (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
|
#ifndef _RAY_OBJECT_SPHERE_H
#define _RAY_OBJECT_SPHERE_H
#include <math.h>
#include "ray_3f.h"
#include "ray_color.h"
#include "ray_object_type.h"
#include "ray_ray.h"
#include "ray_surface.h"
typedef struct ray_object_sphere_t {
ray_object_type_t type;
ray_surface_t surface;
ray_3f_t center;
float radius;
struct {
float r2;
float r_inv;
} _prepared;
} ray_object_sphere_t;
static void ray_object_sphere_prepare(ray_object_sphere_t *sphere)
{
sphere->_prepared.r2 = sphere->radius * sphere->radius;
/* to divide by radius via multiplication in ray_object_sphere_normal() */
sphere->_prepared.r_inv = 1.0f / sphere->radius;
}
static inline int ray_object_sphere_intersects_ray(ray_object_sphere_t *sphere, ray_ray_t *ray, float *res_distance)
{
ray_3f_t v = ray_3f_sub(&ray->origin, &sphere->center);
float b = ray_3f_dot(&v, &ray->direction);
float disc = sphere->_prepared.r2 - (ray_3f_dot(&v, &v) - (b * b));
if (disc > 0) {
float i1, i2;
disc = sqrtf(disc);
i1 = b - disc;
i2 = b + disc;
if (i2 > 0 && i1 > 0) {
*res_distance = i1;
return 1;
}
}
return 0;
}
/* return the normal of the surface at the specified point */
static inline ray_3f_t ray_object_sphere_normal(ray_object_sphere_t *sphere, ray_3f_t *point)
{
ray_3f_t normal;
normal = ray_3f_sub(point, &sphere->center);
normal = ray_3f_mult_scalar(&normal, sphere->_prepared.r_inv); /* normalize without the sqrt() */
return normal;
}
/* return the surface of the sphere @ point */
static inline ray_surface_t ray_object_sphere_surface(ray_object_sphere_t *sphere, ray_3f_t *point)
{
/* uniform solids for now... */
return sphere->surface;
}
#endif
|