1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
|
#include "fb.h"
#include "ray_camera.h"
#include "ray_euler.h"
/* Produce a vector from the provided orientation vectors and proportions. */
static ray_3f_t project_corner(ray_3f_t *forward, ray_3f_t *left, ray_3f_t *up, float focal_length, float horiz, float vert)
{
ray_3f_t tmp;
ray_3f_t corner;
corner = ray_3f_mult_scalar(forward, focal_length);
tmp = ray_3f_mult_scalar(left, horiz);
corner = ray_3f_add(&corner, &tmp);
tmp = ray_3f_mult_scalar(up, vert);
corner = ray_3f_add(&corner, &tmp);
return ray_3f_normalize(&corner);
}
/* Produce vectors for the corners of the entire camera frame, used for interpolation. */
static void project_corners(ray_camera_t *camera, ray_camera_frame_t *frame)
{
ray_3f_t forward, left, up, right, down;
float half_horiz = (float)camera->width / 2.0f;
float half_vert = (float)camera->height / 2.0f;
ray_euler_basis(&camera->orientation, &forward, &up, &left);
right = ray_3f_negate(&left);
down = ray_3f_negate(&up);
frame->nw = project_corner(&forward, &left, &up, camera->focal_length, half_horiz, half_vert);
frame->ne = project_corner(&forward, &right, &up, camera->focal_length, half_horiz, half_vert);
frame->se = project_corner(&forward, &right, &down, camera->focal_length, half_horiz, half_vert);
frame->sw = project_corner(&forward, &left, &down, camera->focal_length, half_horiz, half_vert);
}
/* Begin a frame for the fragment of camera projection, initializing frame and ray. */
void ray_camera_frame_begin(ray_camera_t *camera, fb_fragment_t *fragment, ray_ray_t *ray, ray_camera_frame_t *frame)
{
/* References are kept to the camera, fragment, and ray to be traced.
* The ray is maintained as we step through the frame, that is the
* purpose of this api.
*
* Since the ray direction should be a normalized vector, the obvious
* implementation is a bit costly. The camera frame api hides this
* detail so we can explore interpolation techniques to potentially
* lessen the per-pixel cost.
*/
frame->camera = camera;
frame->fragment = fragment;
frame->ray = ray;
frame->x = frame->y = 0;
/* From camera->orientation and camera->focal_length compute the vectors
* through the viewport's corners, and place these normalized vectors
* in frame->(nw,ne,sw,se).
*
* These can than be interpolated between to produce the ray vectors
* throughout the frame's fragment. The efficient option of linear
* interpolation will not maintain the unit vector length, so to
* produce normalized interpolated directions will require the costly
* normalize function.
*
* I'm hoping a simple length correction table can be used to fixup the
* linearly interpolated vectors to make them unit vectors with just
* scalar multiplication instead of the sqrt of normalize.
*/
project_corners(camera, frame);
frame->x_delta = 1.0f / (float)camera->width;
frame->y_delta = 1.0f / (float)camera->height;
frame->x_alpha = frame->x_delta * (float)fragment->x;
frame->y_alpha = frame->y_delta * (float)fragment->y;
frame->cur_w = ray_3f_lerp(&frame->nw, &frame->sw, frame->y_alpha);
frame->cur_e = ray_3f_lerp(&frame->ne, &frame->se, frame->y_alpha);
ray->origin = camera->position;
ray->direction = ray_3f_normalize(&frame->cur_w);
}
|