summaryrefslogtreecommitdiff
path: root/src/modules/flui2d/flui2d.c
blob: 5fb6087695ed28d8ca816d5467b14c58c46c4bb9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
#include <errno.h>
#include <stdint.h>
#include <inttypes.h>
#include <math.h>
#include <stdlib.h>

#include "til.h"
#include "til_fb.h"
#include "til_settings.h"


/* This code is almost entirely taken from the paper:
 * Real-Time Fluid Dynamics for Games
 * Jos Stam - Alias | Wavefront
 *
 * I take zero credit for it, I only wrote the rototiller integration.
 *   - Vito Caputo <vcaputo@pengaru.com> 10/13/2019
 */

	/* These knobs affect how the simulated fluid behaves */
#define DEFAULT_VISCOSITY	.000000001
#define DEFAULT_DIFFUSION	.00001
#define DEFAULT_DECAY		.0001

#define ROOT		128	// Change this to vary the density field resolution
#define SIZE		((ROOT + 2) * (ROOT + 2))
#define IX(i, j)	((i) + (ROOT + 2) * (j))
#define SWAP(x0, x)	{float *tmp = x0; x0 = x; x = tmp;}

static float	flui2d_viscosity = DEFAULT_VISCOSITY;
static float	flui2d_diffusion = DEFAULT_DIFFUSION;
static float	flui2d_decay = DEFAULT_DECAY;

typedef struct flui2d_t {
	float	u[SIZE], v[SIZE], u_prev[SIZE], v_prev[SIZE];
	float	dens[SIZE], dens_prev[SIZE];
	float	visc, diff, decay;
} flui2d_t;

static void set_bnd(int N, int b, float *x)
{
	for (int i = 1; i <= N; i++) {
		x[IX(0, i)] = b == 1 ? -x[IX(1, i)] : x[IX(1, i)];
		x[IX(N + 1, i)] = b == 1 ? -x[IX(N, i)] : x[IX(N, i)];
		x[IX(i, 0)] = b == 2 ? -x[IX(i, 1)] : x[IX(i, 1)];
		x[IX(i, N + 1)] = b == 2 ? -x[IX(i, N)] : x[IX(i, N)];
	}

	x[IX(0 , 0)] = 0.5 * (x[IX(1, 0)] + x[IX(0, 1)]);
	x[IX(0 , N + 1)] = 0.5 * (x[IX(1, N + 1)] + x[IX(0, N)]);
	x[IX(N + 1, 0)] = 0.5 * (x[IX(N, 0)] + x[IX(N + 1, 1)]);
	x[IX(N + 1, N + 1)] = 0.5 * (x[IX(N, N + 1)] + x[IX(N + 1, N)]);
}

static void add_source(int N, float *x, float *s, float dt)
{
	int	size = (N + 2) * (N + 2);

	for (int i = 0; i < size; i++)
		x[i] += dt * s[i];
}

static void diffuse(int N, int b, float *x, float *x0, float diff, float decay, float dt)
{
	float a = dt * diff * (float)N * (float)N;
	int i, j, k;
	float z = 1.f / (1.f + 4.f * a);

	for (k = 0; k < 20; k++) {
		for (i = 1; i <= N; i++) {
			for (j = 1; j <= N; j++) {
				x[IX(i, j)] = (x0[IX(i, j)] + a * (x[IX(i - 1, j)] + x[IX(i + 1, j)] + x[IX(i, j - 1)] + x[IX(i, j + 1)])) * z * (1.f - decay);
			}
		}
		set_bnd(N, b, x);
	}
}

static void advect(int N, int b, float *d, float *d0, float *u, float *v, float dt)
{
	float x, y, s0, t0, s1, t1, dt0;
	int i, j, i0, j0, i1, j1;

	dt0 = dt * (float)N;
	for (i = 1 ; i <= N ; i++) {
		for (j = 1 ; j <= N; j++) {
			x = (float)i - dt0 * u[IX(i, j)];
			y = (float)j - dt0 * v[IX(i, j)];

			if (x < .5f)
				x = .5f;
			if (x > (float)N + .5f)
				x = (float)N + .5f;

			i0 = (int)x;
			i1 = i0 + 1;

			if (y < .5f)
				y = .5f;
			if (y > (float)N + .5f)
				y = (float)N + .5f;

			j0 = (int)y;
			j1 = j0 + 1;

			s1 = x - (float)i0;
			s0 = 1.f - s1;
			t1 = y - (float)j0;
			t0 = 1.f - t1;

			d[IX(i, j)] = s0 * (t0 * d0[IX(i0, j0)] + t1 * d0[IX(i0, j1)]) + s1 * (t0 * d0[IX(i1, j0)] + t1 * d0[IX(i1, j1)]);
		}
	}
	set_bnd(N, b, d);
}

static void project(int N, float *u, float *v, float *p, float *div)
{
	float h = 1.f / (float)N;
	int i, j, k;

	for (i = 1; i <= N ; i++) {
		for (j = 1; j <= N; j++) {
			div[IX(i, j)] = -0.5 * h *(u[IX(i + 1, j)] - u[IX(i - 1, j)] + v[IX(i, j + 1)] - v[IX(i, j - 1)]);
			p[IX(i, j)] = 0;
		}
	}

	set_bnd(N, 0, div);
	set_bnd(N, 0, p);

	for (k = 0; k < 20; k++) {
		for (i = 1; i <= N; i++) {
			for (j = 1; j <= N; j++) {
				p[IX(i, j)] = (div[IX(i, j)] + p[IX(i - 1, j)] + p[IX(i + 1, j)] + p[IX(i, j - 1)] + p[IX(i, j + 1)]) * .25f;
			}
		}
		set_bnd(N, 0, p);
	}

	for (i = 1; i <= N; i++) {
		for (j = 1; j <= N; j++) {
			u[IX(i, j)] -= 0.5 * (p[IX(i + 1, j)] - p[IX(i - 1, j)]) / h;
			v[IX(i, j)] -= 0.5 * (p[IX(i, j + 1)] - p[IX(i, j - 1)]) / h;
		}
	}

	set_bnd(N, 1, u);
	set_bnd(N, 2, v);
}

static void dens_step(int N, float *x, float *x0, float *u, float *v, float diff, float decay, float dt)
{

	/*
	 * The paper includes this, but it blows up the simulation.
	 * add_source(N, x, x0, dt);
	 * SWAP(x0, x);
	 */
	diffuse(N, 0, x, x0, diff, decay, dt);
	SWAP(x0, x);
	advect(N, 0, x, x0, u, v, dt);
}

static void vel_step(int N, float *u, float *v, float *u0, float *v0, float visc, float dt)
{
	add_source(N, u, u0, dt);
	add_source(N, v, v0, dt);
	SWAP(u0, u);
	diffuse(N, 1, u, u0, visc, 0.f, dt);
	SWAP(v0, v);
	diffuse(N, 2, v, v0, visc, 0.f, dt);
	project(N, u, v, u0, v0);
	SWAP(u0, u);
	SWAP(v0, v);
	advect(N, 1, u, u0, u0, v0, dt);
	advect(N, 2, v, v0, u0, v0, dt);
	project(N, u, v, u0, v0);
}


typedef struct flui2d_context_t {
	flui2d_t	fluid;
	float		xf, yf;
} flui2d_context_t;


static void * flui2d_create_context(unsigned ticks, unsigned num_cpus)
{
	flui2d_context_t	*ctxt;

	ctxt = calloc(1, sizeof(flui2d_context_t));
	if (!ctxt)
		return NULL;

	ctxt->fluid.visc = flui2d_viscosity;
	ctxt->fluid.diff = flui2d_diffusion;
	ctxt->fluid.decay = flui2d_decay;

	return ctxt;
}


static void flui2d_destroy_context(void *context)
{
	free(context);
}


static int flui2d_fragmenter(void *context, const til_fb_fragment_t *fragment, unsigned number, til_fb_fragment_t *res_fragment)
{
	return til_fb_fragment_tile_single(fragment, 64, number, res_fragment);
}


/* Prepare a frame for concurrent drawing of fragment using multiple fragments */
static void flui2d_prepare_frame(void *context, unsigned ticks, unsigned n_cpus, til_fb_fragment_t *fragment, til_fragmenter_t *res_fragmenter)
{
	flui2d_context_t	*ctxt = context;
	float			r = (ticks % (unsigned)(2 * M_PI * 1000)) * .001f;
	int			x = (cos(r) * .4f + .5f) * (float)ROOT;	/* figure eight pattern for the added densities */
	int			y = (sin(r * 2.f) * .4f + .5f) * (float)ROOT;

	*res_fragmenter = flui2d_fragmenter;

	ctxt->fluid.dens_prev[IX(x, y)] = 1.f;

	/* This orientation for the added velocities at the added densities isn't trying to
	 * emulate any sort of physical relationship to the movement - it's just creating a variety
	 * of turbulence.  It'd be trivial to make it look like a rocket's jetstream or something.
	 */
	ctxt->fluid.u_prev[IX(x, y)] = cos(r * 3.f) * 10.f;
	ctxt->fluid.v_prev[IX(x, y)] = sin(r * 3.f) * 10.f;

	/* These are the core of the simulation, and can't currently be threaded using the paper's implementation, so they
	 * must occur serialized here in prepare_frame.  It would be interesting to try refactor the API and tweak the
	 * implementation for threading, as it would really open up larger field sizes as well as map more naturally to
	 * a GLSL implementation for a fragment shader.
	 */
	vel_step(ROOT, ctxt->fluid.u, ctxt->fluid.v, ctxt->fluid.u_prev, ctxt->fluid.v_prev, ctxt->fluid.visc, .1f);
	dens_step(ROOT, ctxt->fluid.dens, ctxt->fluid.dens_prev, ctxt->fluid.u, ctxt->fluid.v, ctxt->fluid.diff, ctxt->fluid.decay, .1f);

	ctxt->xf = 1.f / fragment->frame_width;
	ctxt->yf = 1.f / fragment->frame_height;
}


/* Draw a the flui2d densities */
static void flui2d_render_fragment(void *context, unsigned ticks, unsigned cpu, til_fb_fragment_t *fragment)
{
	flui2d_context_t	*ctxt = context;

	for (int y = fragment->y; y < fragment->y + fragment->height; y++) {
		int	y0, y1;
		float	Y;

		Y = (float)y * ctxt->yf * (float)ROOT;
		y0 = (int)Y;
		y1 = y0 + 1;

		for (int x = fragment->x; x < fragment->x + fragment->width; x++) {
			float		X, dens, dx0, dx1;
			int		x0, x1;
			uint32_t	pixel;

			X = (float)x * ctxt->xf * (float)ROOT;
			x0 = (int)X;
			x1 = x0 + 1;

			/* linear interpolation of density samples */
			dx0 = ctxt->fluid.dens[(int)IX(x0, y0)] * (1.f - (X - x0));
			dx0 += ctxt->fluid.dens[(int)IX(x1, y0)] * (X - x0);
			dx1 = ctxt->fluid.dens[(int)IX(x0, y1)] * (1.f - (X - x0));
			dx1 += ctxt->fluid.dens[(int)IX(x1, y1)] * (X - x0);
			dens = dx0 * (1.f - (Y - y0)) + dx1 * (Y - y0);

			pixel = ((float)dens * 256.f);
			pixel = pixel << 16 | pixel << 8 | pixel;
			til_fb_fragment_put_pixel_unchecked(fragment, x, y, pixel);
		}
	}
}


/* Settings hooks for configurable variables */
static int flui2d_setup(const til_settings_t *settings, til_setting_desc_t **next_setting)
{
	const char	*viscosity;
	const char	*diffusion;
	const char	*values[] = {
				".000000000001",
				".0000000001",
				".000000001",
				".00000001",
				".0000001",
				".000001",
				".00001",
				".0001",
				NULL
			};
	const char	*decay;
	const char	*decay_values[] = {
				".000001",
				".00001",
				".0001",
				".001",
				".01",
				NULL
			};


	viscosity = til_settings_get_value(settings, "viscosity");
	if (!viscosity) {
		int	r;

		r = til_setting_desc_clone(&(til_setting_desc_t){
						.name = "Fluid Viscosity",
						.key = "viscosity",
						.regex = "\\.[0-9]+",
						.preferred = TIL_SETTINGS_STR(DEFAULT_VISCOSITY),
						.values = values,
						.annotations = NULL
					}, next_setting);
		if (r < 0)
			return r;

		return 1;
	}

	diffusion = til_settings_get_value(settings, "diffusion");
	if (!diffusion) {
		int	r;

		r = til_setting_desc_clone(&(til_setting_desc_t){
						.name = "Fluid Diffusion",
						.key = "diffusion",
						.regex = "\\.[0-9]+",
						.preferred = TIL_SETTINGS_STR(DEFAULT_DIFFUSION),
						.values = values,
						.annotations = NULL
					}, next_setting);
		if (r < 0)
			return r;

		return 1;
	}

	decay = til_settings_get_value(settings, "decay");
	if (!decay) {
		int	r;

		r = til_setting_desc_clone(&(til_setting_desc_t){
						.name = "Fluid Decay",
						.key = "decay",
						.regex = "\\.[0-9]+",
						.preferred = TIL_SETTINGS_STR(DEFAULT_DECAY),
						.values = decay_values,
						.annotations = NULL
					}, next_setting);
		if (r < 0)
			return r;

		return 1;
	}

	/* TODO: return -EINVAL on parse errors? */
	sscanf(viscosity, "%f", &flui2d_viscosity);
	sscanf(diffusion, "%f", &flui2d_diffusion);
	sscanf(decay, "%f", &flui2d_decay);

	/* prevent overflow in case an explicit out of range setting is supplied */
	if (flui2d_decay > 1.f || flui2d_decay < 0.f)
		return -EINVAL;

	return 0;
}


til_module_t	flui2d_module = {
	.create_context = flui2d_create_context,
	.destroy_context = flui2d_destroy_context,
	.prepare_frame = flui2d_prepare_frame,
	.render_fragment = flui2d_render_fragment,
	.name = "flui2d",
	.description = "Fluid dynamics simulation in 2D (threaded (poorly))",
	.author = "Vito Caputo <vcaputo@pengaru.com>",
	.license = "Unknown",
	.setup = flui2d_setup,
};
© All Rights Reserved