1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
|
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include "ff.h"
#include "v3f.h"
typedef struct ff_t {
unsigned size;
v3f_t *fields[2];
void (*populator)(void *context, unsigned size, const v3f_t *other, v3f_t *field);
void *populator_context;
} ff_t;
/* populate the flow field specified by idx */
void ff_populate(ff_t *ff, unsigned idx)
{
unsigned other;
assert(idx < 2);
other = (idx + 1) % 2;
ff->populator(ff->populator_context, ff->size, ff->fields[other], ff->fields[idx]);
}
ff_t * ff_free(ff_t *ff)
{
if (ff) {
for (int i = 0; i < 2; i++)
free(ff->fields[i]);
free(ff);
}
return NULL;
}
ff_t * ff_new(unsigned size, void (*populator)(void *context, unsigned size, const v3f_t *other, v3f_t *field), void *context)
{
ff_t *ff;
ff = calloc(1, sizeof(ff_t));
if (!ff)
return NULL;
for (int i = 0; i < 2; i++) {
ff->fields[i] = calloc(size * size * size, sizeof(v3f_t));
if (!ff->fields[i])
return ff_free(ff);
}
ff->size = size;
ff->populator = populator;
ff->populator_context = context;
for (unsigned i = 0; i < 2; i++)
ff_populate(ff, i);
return ff;
}
static inline v3f_t ff_sample(v3f_t *field, size_t size, v3f_t *min, v3f_t *max, v3f_t *t)
{
v3f_t *a, *b, *c, *d, *e, *f, *g, *h;
size_t ss = size * size;
a = &field[(size_t)min->x * ss + (size_t)max->y * size + (size_t)min->z];
b = &field[(size_t)max->x * ss + (size_t)max->y * size + (size_t)min->z];
c = &field[(size_t)min->x * ss + (size_t)min->y * size + (size_t)min->z];
d = &field[(size_t)max->x * ss + (size_t)min->y * size + (size_t)min->z];
e = &field[(size_t)min->x * ss + (size_t)max->y * size + (size_t)max->z];
f = &field[(size_t)max->x * ss + (size_t)max->y * size + (size_t)max->z];
g = &field[(size_t)min->x * ss + (size_t)min->y * size + (size_t)max->z];
h = &field[(size_t)max->x * ss + (size_t)min->y * size + (size_t)max->z];
return v3f_trilerp(a, b, c, d, e, f, g, h, t);
}
/* return an interpolated value from ff for the supplied coordinate */
/* coordinate must be in the range 0-1,0-1,0-1 */
/* w must be in the range 0-1 and determines how much of field 0 or 1 contributes to the result */
v3f_t ff_get(ff_t *ff, v3f_t *coordinate, float w)
{
v3f_t scaled, min, max, t, A, B;
assert(w <= 1.f && w >= 0.f);
assert(coordinate->x <= 1.f && coordinate->x >= 0.f);
assert(coordinate->y <= 1.f && coordinate->y >= 0.f);
assert(coordinate->z <= 1.f && coordinate->z >= 0.f);
scaled = v3f_mult_scalar(coordinate, ff->size - 1);
/* define the cube flanking the requested coordinate */
min.x = floorf(scaled.x - 0.5f) + 0.5f;
min.y = floorf(scaled.y - 0.5f) + 0.5f;
min.z = floorf(scaled.z - 0.5f) + 0.5f;
max.x = min.x + 1.0f;
max.y = min.y + 1.0f;
max.z = min.z + 1.0f;
t.x = scaled.x - min.x;
t.y = scaled.y - min.y;
t.z = scaled.z - min.z;
assert((size_t)min.x < ff->size);
assert((size_t)min.x < ff->size);
assert((size_t)min.y < ff->size);
assert((size_t)max.x < ff->size);
assert((size_t)max.x < ff->size);
assert((size_t)max.y < ff->size);
A = ff_sample(ff->fields[0], ff->size, &min, &max, &t);
B = ff_sample(ff->fields[1], ff->size, &min, &max, &t);
return v3f_nlerp(&A, &B, w);
}
|