Age | Commit message (Collapse) | Author |
|
Let's make it so til_module_context_t as returned from
til_module_context_new() can immediately be freed via
til_module_context_free().
Previously it was only after the context propagated out to
til_module_context_create() that it could be freed that way, as
that was where the module member was being assigned.
With this change, and wiring up the module pointer into
til_module_t.create_context() as well for convenient providing to
til_module_context_new(), til_module_t.create_context() error
paths can easily cleanup via `return til_module_context_free()`
But this does require the til_module_t.destroy_context() be able
to safely handle partially constructed contexts, since the
mid-create failure freeing won't necessarily have all the members
initialized. There will probably be some NULL derefs to fix up,
but at least the contexts are zero-initialized @ new.
|
|
This was mostly done out of convenience at the expense of turning
the fragment struct into more of a junk drawer.
But properly cleaning up owned stream pipes on context destroy
makes the inappropriateness of being part of til_fb_fragment_t
glaringly apparent.
Now the stream is just a separate thing passed to context create,
with a reference kept in the context for use throughout. Cleanup
of the owned pipes on the stream supplied to context create is
automagic when the context gets destroyed.
Note that despite there being a stream in the module context, the
stream to use is still supplied to all the rendering family
functions (prepare/render/finish) and it's the passed-in stream
which should be used by these functions. This is done to support
the possibility of switching out the stream frame-to-frame, which
may be interesting. Imagine doing things like a latent stream
and a future stream and switching between them on the fly for
instance. If there's a sequencing composite module, it could
flip between multiple sets of tracks or jump around multiple
streams with the visuals immediately flipping accordingly.
This should fix the --print-pipes crashing issues caused by lack
of cleanup when contexts were removed (like rtv does so often).
|
|
There needs to be a way to address module context instances
by name externally, in a manner complementary to settings and
taps.
This commit adds a string-based path to til_module_context_t, and
modifies til_module_create_context() to accept a parent path
which is then concatenated with the name of the module to produce
the module instance's new path.
The name separator used in the paths is '/' just like filesystem
paths, but these paths have no relationship to filesystems or
files.
The root module context creation in rototiller's main simply
passes "" as the parent path, resulting in a "/" root as one
would expect.
There are some obvious complications introduced here however:
- checkers in particular creates a context per cpu, simply using
the same seed and setup to try make the contexts identical at
the same ticks value. With this commit I'm simply passing the
incoming path as the parent for creating those contexts, but
it's unclear to me if that will work OK. With an eye towards
taps deriving their parent path from the context path, I guess
these taps would all get the same parent and hash to the same
value despite being duplicated. Maybe it Just Works, but one
thing is clear - there won't be any way to address the per-cpu
taps as-is. Maybe that's desirable though, there's probably
not much use in trying to control the taps at the CPU
granularity.
- when the recursive settings stuff lands, it should bring along
the ability to explicitly name settings blocks. Those names
should override the module name in constructing the path.
I've noted as such in the code.
- these paths probably need to be hashed @ initialization time
so there needs to be a hash function added to til, and a hash
value accompanying the name in the module context. It'd be
dumb to keep recomputing the hash when these paths get used
for hash table lookups multiple times per frame...
there's probably more I'm forgetting right now, but this seems
like a good first step.
fixup root path
|
|
Preparatory commit for enabling cloneable/swappable fragments
There's an outstanding issue with the til_fb_page_t submission,
see comments. Doesn't matter for now since cloning doesn't happen
yet, but will need to be addressed before they do.
|
|
modules/checkers w/fill_module=$module requires a consistent
mapping of cpu to fragnum since it creates a per-cpu
til_module_context_t for the fill_module.
The existing implementation for threaded rendering maximizes
performance by letting *any* scheduled to run thread advance
fragnum atomically and render the acquired fragnum
indiscriminately. A side effect of this is any given frame, even
rendered by the same module, will have a random mapping of
cpus/threads to fragnums.
With this change, the simple til_module_t.prepare_frame() API of
returning a bare fragmenter function is changed to instead return
a "frame plan" in til_frame_plan_t. Right now til_frame_plan_t
just contains the same fragmenter as before, but also has a
.cpu_affinity member for setting if the frame requires a stable
relationship of cpu/thread to fragnum.
Setting .cpu_affinity should be avoided if unnecessary, and that
is the default if you don't mention .cpu_affinity at all when
initializing the plan in the ergonomic manner w/designated
initializers. This is because the way .cpu_affinity is
implemented will leave threads spinning while they poll for
*their* next fragnum using atomic intrinsics. There's probably
some room for improvement here, but this is good enough for now
to get things working and correct.
|
|
Also wire this up to the til_module_context_new() helper and
all its callers.
This is in preparation for modules doing more correct delta-T
derived animation.
|
|
- modules now allocate their contexts using
til_module_context_new() instead of [cm]alloc().
- modules simply embed til_module_context_t at the start of their
respective private context structs, if they do anything with
contexts
- modules that do nothing with contexts (lack a create_context()
method), will now *always* get a til_module_context_t supplied
to their other methods regardless of their create_context()
presence. So even if you don't have a create_context(), your
prepare_frame() and/or render_fragment() methods can still
access seed and n_cpus from within the til_module_context_t
passed in as context, *always*.
- modules that *do* have a create_context() method, implying they
have their own private context type, will have to cast the
til_module_context_t supplied to the other methods to their
private context type. By embedding the til_module_context_t at
the *start* of their private context struct, a simple cast is
all that's needed. If it's placed somewhere else, more
annoying container_of() style macros are needed - this is
strongly discouraged, just put it at the start of struct.
- til_module_create_context() now takes n_cpus, which may be set
to 0 for automatically assigning the number of threads in its
place. Any non-zero value is treated as an explicit n_cpus,
primarily intended for setting it to 1 for single-threaded
contexts necessary when embedded within an already-threaded
composite module.
- modules like montage which open-coded a single-threaded render
are now using the same til_module_render_fragment() as
everything else, since til_module_create_context() is accepting
n_cpus.
- til_module_create_context() now produces a real type, not void
*, that is til_module_context_t *. All the other module
context functions now operate on this type, and since
til_module_context_t.module tracks the module this context
relates to, those functions no longer require both the module
and context be passed in. This is especially helpful for
compositing modules which do a lot of module context creation
and destruction; the module handle is now only needed to create
the contexts. Everything else operating on that context only
needs the single context pointer, not module+context pairs,
which was unnecessarily annoying.
- if your module's context can be destroyed with a simple free(),
without any deeper knowledge or freeing of nested pointers, you
can now simply omit destroy_context() altogether. When
destroy_context() is missing, til_module_context_free() will
automatically use libc's free() on the pointer returned from
your create_context() (or on the pointer that was automatically
created if you omitted create_context() too, for the
bare til_module_context_t that got created on your behalf
anyways).
For the most part, these changes don't affect module creation.
In some ways this eases module creation by making it more
convenient access seed and n_cpus if you had no further
requirement for a context struct.
In other ways it's slightly annoying to have to do type-casts
when you're working with your own context type, since before it
was all void* and didn't require casts when assigning to your
typed context variables.
The elimination for requiring a destroy_context() method in
simple free() of private context scenarios removes some
boilerplate in simple cases.
I think it's a wash for module writers, or maybe a slight win for
the simple cases.
|
|
This is a mostly mechanical change of using rand_r() in place of
rand(), using the provided seed as the seed state.
There's some outstanding rand()s outside of create_context()
which should probably get switched over, with the seed being
stowed in the context struct. I didn't bother going deeper on
this at the moment in the interests of getting to sleep soon.
|
|
n_cells is a size_t, use %zu
clang complained, gcc doesn't, huh
|
|
In the recent surge of ADD-style rtv+compose focused development,
a bunch of modules were changed to randomize initial states at
context_create() so they wouldn't be so repetitive.
But the way this was done in a way that made it impossible to
suppress the randomized initial state, which sometimes may be
desirable in compositions. Imagine for instance something like
the checkers module, rendering one module in the odd cells, and
another module into the even cells. Imagine if these modules are
actually the same, but if checkers used one seed for all the odd
cells and another seed for all the even cells. If the modules
used actually utilized the seed provided, checkers would be able
to differentiate the odd from even by seeding them differently
even when the modules are the same.
This commit is a step in that direction, but rototiller and all
the composite modules (rtv,compose,montage) are simply passing
rand() as the seeds. Also none of the modules have yet been
modified to actually make use of these seeds.
Subsequent commits will update modules to seed their
pseudo-randomized initial state from the seed value rather than
always calling things like rand() themselves.
|
|
We don't actually want to produce indices 0-width and 0-height
|
|
Just one case, modules/submit, was using 32x32 tiles and is now
using 64x64. I don't expect it to make any difference.
While here I fixed up the num_cpus/n_cpus naming inconsistencies,
normalizing on n_cpus.
|
|
Fragmenting is often dimensioned according to the number of cpus,
and by not supplying this to the fragmenter it was made rather
common for module contexts to plumb this themselves - in some
cases incorporating a context type/create/destroy rigamarole
for the n_cpus circuit alone.
So just plumb it in libtil, and the prepare_frame functions can
choose to ignore it if they have something more desirable onhand.
Future commits will remove a bunch of n_cpus from module contexts
in favor of this.
|
|
This adds a voronoi diagram module, which when used as an overlay
produces a mosaic effect.
Some settings:
cells=N number of voronoi cells
randomize={on,off} randomizes the cell locations every frame
dirty={on,off} uses a faster sloppy/dithery-looking method
Some TODO items:
- use a more space efficient representation of the distance
buffer, maybe use uint16_t relative offsets into the cells
rather than pointers - capping their quantity to 64KiB
- anti-alias edges between cells
|