Age | Commit message (Collapse) | Author |
|
Just rely on til_init()'s srand() ensuring things are fresh.
|
|
This is a preparatory commit for cleaning up the existing sloppy
global-ish application of settings during the iterative _setup()
call sequences.
Due to how this has evolved from a very rudimentary thing
enjoying many assumptions about there ever only being a single
module instance being configured by the settings, there's a lot
of weirdness and inconsistency surrounding module setup WRT
changes being applied instantaneously to /all/ existing and
future context's renderings of a given module vs. requiring a new
context be created to realize changes.
This commit doesn't actually change any of that, but puts the
plumbing in place for the setup methods to allocate and
initialize a private struct encapsulating the parsed and
validated setup once the settings are complete. This opaque
setup pointer will then be provided to the associated
create_context() method as the setup pointer. Then the created
context can configure itself using the provided setup when
non-NULL, or simply use defaults when NULL.
A future commit will update the setup methods to allocate and
populate their respective setup structs, adding the structs as
needed, as well as updating their create_context() methods to
utilize those setups.
One consequence of these changes when fully realized will be that
every setting change will require a new context be created from
the changed settings for the change to be realized.
For settings appropriately manipulated at runtime the concept of
knobs was introduced but never finished. That will have to be
finished in the future to enable more immediate/interactive
changing of settings-like values appropriate for interactive
manipulation
|
|
Originally the thinking was that rototiller modules would become
dlopen()ed shared objects, and that it would make sense to let
them be licensed differently.
At this time only some modules I have written were gplv3, Phil's
modules are all gplv2, and I'm not inclined to pivot towards a
dlopen model.
So this commit drops the license field from til_module_t,
relicenses my v3 code to v2, and adds a gplv2 LICENSE file to the
source root dir. As of now rototiller+libtil and all its modules
are simply gplv2, and anything linking in libtil must use a gplv2
compatible license - the expectation is that you just use gplv2.
|
|
Largely mechanical rename of librototiller -> libtil, but
introducing a til_ prefix to all librototiller (now libtil)
functions and types where a rototiller prefix was absent.
This is just a step towards a more libized librototiller, and til
is just a nicer to type/read prefix than rototiller_.
|
|
Minor cosmetic consistency fixup
|
|
time() only changes every second, so this had the effect of freezing
the seed a second at a time, affecting all rand() users, when spiro's
create_context() was called more frequently than 1HZ.
When using rtv with channels=spiro,duration=0 the create_context() gets
called every other frame, and the visual results were very broken with
the spiro only actually reseeding every second and the snow between each
frame being static since it too uses rand() for seeding itself.
This whole situation suggests no module should be calling srand(), and
instead rototiller should probably call srand() once at startup and any
modules that wish to use rand with a different seed should use rand_r(),
and maybe rand() just for acquiring the seed like modules/snow does.
|
|
Most modules find themselves wanting some kind of "t" value increasing
with time or frames rendered. It's common for them to create and
maintain this variable locally, incrementing it with every frame
rendered.
It may be interesting to introduce a global notion of ticks since
rototiller started, and have all modules derive their "t" value from
this instead of having their own private versions of it.
In future modules and general innovations it seems likely that playing
with time, like jumping it forwards and backwards to achieve some
visual effects, will be desirable. This isn't applicable to all
modules, but for many their entire visible state is derived from their
"t" value, making them entirely reversible.
This commit doesn't change any modules functionally, it only adds the
plumbing to pull a ticks value down to the modules from the core.
A ticks offset has also been introduced in preparation for supporting
dynamic shifting of the ticks value, though no API is added for doing
so yet.
It also seems likely an API will be needed for disabling the
time-based ticks advancement, with functions for explicitly setting
its value. If modules are created for incorporating external
sequencers and music coordination, they will almost certainly need to
manage the ticks value explicitly. When a sequencer jumps
forwards/backwards in the creative process, the module glue
responsible will need to keep ticks synchronized with the
sequencer/editor tool.
Before any of this can happen, we need ticks as a first-class core
thing shared by all modules.
Future commits will have to modify existing modules to use the ticks
appropriately, replacing their bespoke variants.
|
|
This commit adds a module that emulates a spirograph
|