Age | Commit message (Collapse) | Author |
|
This brings something resembling an actual type to the private
objects returrned in *res_setup. Internally libtil/rototiller
wants this to be a til_setup_t, and it's up to the private users
of what's returned in *res_setup to embed this appropriately and
either use container_of() or casting when simply embedded at the
start to go between til_setup_t and their private containing
struct.
Everywhere *res_setup was previously allocated using calloc() is
now using til_setup_new() with a free_func, which til_setup_new()
will initialize appropriately. There's still some remaining work
to do with the supplied free_func in some modules, where free()
isn't quite appropriate.
Setup freeing isn't actually being performed yet, but this sets
the foundation for that to happen in a subsequent commit that
cleans up the setup leaks.
Many modules use a static default setup for when no setup has
been provided. In those cases, the free_func would be NULL,
which til_setup_new() refuses to do. When setup freeing actually
starts happening, it'll simply skip freeing when
til_setup_t.free_func is NULL.
|
|
Mechanical renaming of "zero" to "clear" throughout for this
context.
|
|
Just rely on til_init()'s srand() ensuring things are fresh.
|
|
Now modules allocate and return an opaque setup pointer in
res_setup when they implement a setup method.
Defaults are utilized when ${module}_create_context() receives a
NULL setup. The default setup used in this case should match the
defaults/preferred values emitted by the module's setup method.
But performing setup should always be optional, so a NULL setup
provided to create_context() is to be expected.
No cleanup of these setup instances is currently performed, so
it's a small memory leak for now. Since these are opaque and may
contain nested references to other allocations, simply using
free() somewhere in the frontend is insufficient. There will
probably need to be something like a til_module_t.setup_free()
method added in the future which modules may assign libc's free()
to when appropriate, or their own more elaborate version.
Lifecycle for the settings is very simple; the setup method
returns an instance, the caller is expected to free it when no
longer needed (once free is implemented). The create_context
consumer of a given setup must make its own copy of the settings
if necessary, and may not keep a reference - it must assume the
setup will be freed immediately after create_context() returns.
This enables the ability to reuse a setup instance across
multiple create_context() calls if desired, one can imagine
something like running the same module with the same settings
multiple times across multiple displays for instance. If the
module has significant entropy the output will differ despite
being configured identically...
With this commit one may change settings for any of the modules
*while* the modules are actively rendering a given context, and
the settings should *not* be visible. They should only affect
the context they're supplied to.
|
|
This is a preparatory commit for cleaning up the existing sloppy
global-ish application of settings during the iterative _setup()
call sequences.
Due to how this has evolved from a very rudimentary thing
enjoying many assumptions about there ever only being a single
module instance being configured by the settings, there's a lot
of weirdness and inconsistency surrounding module setup WRT
changes being applied instantaneously to /all/ existing and
future context's renderings of a given module vs. requiring a new
context be created to realize changes.
This commit doesn't actually change any of that, but puts the
plumbing in place for the setup methods to allocate and
initialize a private struct encapsulating the parsed and
validated setup once the settings are complete. This opaque
setup pointer will then be provided to the associated
create_context() method as the setup pointer. Then the created
context can configure itself using the provided setup when
non-NULL, or simply use defaults when NULL.
A future commit will update the setup methods to allocate and
populate their respective setup structs, adding the structs as
needed, as well as updating their create_context() methods to
utilize those setups.
One consequence of these changes when fully realized will be that
every setting change will require a new context be created from
the changed settings for the change to be realized.
For settings appropriately manipulated at runtime the concept of
knobs was introduced but never finished. That will have to be
finished in the future to enable more immediate/interactive
changing of settings-like values appropriate for interactive
manipulation
|
|
attempt at making these more clear
|
|
Now that til_setting_t.desc is not only a thing, but a thing that
is intended to be refreshed regularly in the course of things
like GUI interactive settings construction, it's not really
appropriate to try even act like this these are const anymore.
|
|
Always only capitalize the first letter, never capitalize like
titles.
|
|
Originally the thinking was that rototiller modules would become
dlopen()ed shared objects, and that it would make sense to let
them be licensed differently.
At this time only some modules I have written were gplv3, Phil's
modules are all gplv2, and I'm not inclined to pivot towards a
dlopen model.
So this commit drops the license field from til_module_t,
relicenses my v3 code to v2, and adds a gplv2 LICENSE file to the
source root dir. As of now rototiller+libtil and all its modules
are simply gplv2, and anything linking in libtil must use a gplv2
compatible license - the expectation is that you just use gplv2.
|
|
The existing iterative *_setup() interface only described
settings not found, quietly accepting usable settings already
present in the til_settings_t.
This worked fine for the existing interactive text setup thing,
but it's especially problematic for providing a GUI setup
frontend.
This commit makes it so the *_setup() methods always describe
undescribed settings they recognize, leaving the setup frontend
loop calling into the *_setup() methods to both apply the
description validation if wanted and actually tie the description
to respective setting returned by the _setup() methods as being
related to the returned description.
A new helper called til_settings_get_and_describe_value() has
been introduced primarily for use of module setup methods to
simplify this nonsense, replacing the til_settings_get_value()
calls and surrounding logic, but retaining the til_setting_desc_t
definitions largely verbatim.
This also results in discarding of some ad-hoc
til_setting_desc_check() calls, now that there's a centralized
place where settings become "described" (setup_interactively in
the case of rototiller).
Now a GUI frontend (like glimmer) would just provide its own
setup_interactively() equivalent for constructing its widgets for
a given *_setup() method's chain of returned descs. Whereas in
the past this wasn't really feasible unless there was never going
to be pre-supplied settings.
I suspect the til_setting_desc_check() integration into
setup_interactively() needs more work, but I think this is good
enough for now and I'm out of spare time for the moment.
|
|
Largely mechanical rename of librototiller -> libtil, but
introducing a til_ prefix to all librototiller (now libtil)
functions and types where a rototiller prefix was absent.
This is just a step towards a more libized librototiller, and til
is just a nicer to type/read prefix than rototiller_.
|
|
This is a first approximation of separating the core modules and
threaded rendering from the cli-centric rototiller program and
its sdl+drm video backends.
Unfortunately this seemed to require switching over to libtool
archives (.la) to permit consolidating the per-lib and
per-module .a files into the librototiller.a and linking just
with librototiller.a to depend on the aggregate of
libs+modules+librototiller-glue in a simple fashion.
If an alternative to .la comes up I will switch over to it,
using libtool really slows down the build process.
Those are implementation/build system details though. What's
important in these changes is establishing something resembling a
librototiller API boundary, enabling creating alternative
frontends which vendor this tree as a submodule and link just to
librototiller.{la,a} for all the modules+threaded rendering of
them, while providing their own fb_ops_t for outputting into, and
their own settings applicators for driving the modules setup.
|
|
This commit adds a few settings for visualizing the octree BSP:
show_bsp_leafs (on/off):
Draw wireframe cubes around octree leaf nodes
show_bsp_leafs_min_depth (0,4,6,8,10):
Set minimum octree depth for leaf nodes displayed
show_bsp_matches (on/off):
Draw lines connecting BSP search matches
show_bsp_matches_affected_only (on/off):
Limit drawn BSP search matches to only matches actually
affected by the simulation
The code implementing this stuff is a bit crufty, fb_fragment_t
had to be pulled down to the sim ops for example and whether that
actually results in drawing occurring during the sim phase
depends on the config used and how the particle implementations
react to the config... it's just gross. This matters because the
caller used to know only the draw phase touched fb_fragment_t,
and because of that the fragment was zeroed after sim and before
draw in parallel. But now the caller needs to know if the config
would make sim do some drawing, and do the fragment zeroing
before sim instead, and skip the zero before draw to not lose
what sim drew. It's icky, but I'll leave it for now, at least
it's isolated to the sparkler.
|
|
These don't actually do anything yet
|
|
Just stubbed out for now, wanting to restore some octree overlays like
the old standalone sparkler had. Those can be wired up to settings so
rtv can occasionally show the spatial partition and matched particles.
|
|
Most modules find themselves wanting some kind of "t" value increasing
with time or frames rendered. It's common for them to create and
maintain this variable locally, incrementing it with every frame
rendered.
It may be interesting to introduce a global notion of ticks since
rototiller started, and have all modules derive their "t" value from
this instead of having their own private versions of it.
In future modules and general innovations it seems likely that playing
with time, like jumping it forwards and backwards to achieve some
visual effects, will be desirable. This isn't applicable to all
modules, but for many their entire visible state is derived from their
"t" value, making them entirely reversible.
This commit doesn't change any modules functionally, it only adds the
plumbing to pull a ticks value down to the modules from the core.
A ticks offset has also been introduced in preparation for supporting
dynamic shifting of the ticks value, though no API is added for doing
so yet.
It also seems likely an API will be needed for disabling the
time-based ticks advancement, with functions for explicitly setting
its value. If modules are created for incorporating external
sequencers and music coordination, they will almost certainly need to
manage the ticks value explicitly. When a sequencer jumps
forwards/backwards in the creative process, the module glue
responsible will need to keep ticks synchronized with the
sequencer/editor tool.
Before any of this can happen, we need ticks as a first-class core
thing shared by all modules.
Future commits will have to modify existing modules to use the ticks
appropriately, replacing their bespoke variants.
|
|
Mechanical change removing abbreviation for consistency
|
|
Mostly mechanical change, though threads.c needed some jiggering to
make the logical cpu id available to the worker threads.
Now render_fragment() can easily addresss per-cpu data created by
create_context().
|
|
Back in the day, there was no {create,destroy}_context(), so passing
num_cpus to just prepare_frame made sense. Modules then would
implicitly initialize themselves on the first prepare_frame() call
using a static initialized variable.
Since then things have been decomposed a bit for more sophisticated
(and cleaner) modules. It can be necessary to allocate per-cpu data
structures and the natural place to do that is @ create_context(). So
this commit wires that up.
A later commit will probably have to plumb a "current cpu" identifier
into the render_fragment() function. Because a per-cpu data structure
isn't particularly useful if you can't easily address it from within
your execution context.
|
|
This simplifies the bsp code while addressing cleanup
|
|
This assert prevents using the chunker for efficient freeing,
maybe in the future add a flag for toggling this but for now
it can just be commented out.
|
|
particles_free() didn't do all the necessary cleanup.
bsp_free() remains mostly unimplemented. I think this wasn't done at
the time because I was thinking bsp.c should use the chunker, then
cleanup is just a matter of freeing the chunker instead of traversing
the bsp.
|
|
Fixes silly cosmetic error in configure output for checking libdrm...
|
|
Mechanical cosmetic change
|
|
Rather than laying out all fragments in a frame up-front in
ray_module_t.prepare_frame(), return a fragment generator
(rototiller_fragmenter_t) which produces the numbered fragment
as needed.
This removes complexity from the serially-executed
prepare_frame() and allows the individual fragments to be
computed in parallel by the different threads. It also
eliminates the need for a fragments array in the
rototiller_frame_t, indeed rototiller_frame_t is eliminated
altogether.
|
|
Prior to rototiller_module_t these headers were included
and the module-specific render functions called directly.
That's no longer the case, these files are irrelevant today.
|
|
This moves most of the particle system maintenance into the serially
executed sparkler_prepare_frame(), divides the frame into ncpus
fragments, and leaves the draw to occur concurrently.
The drawing must still currently process all particles and simply skips
drawing those falling outside the fragment.
Moving more of the computation out of prepare_frame() and into
render_fragment() is left for future improvements, as it's a bit
complex to do gainfully.
|
|
should_draw_expire_if_oob() assumed the fragment represented the entire
frame. Instead, return 0 if the coordinates are outside the fragment,
but only reset longevity if outside of the frame.
If sparkler goes threaded in the drawing, this would result in threads
simply skipping particles outside the fragment. The longevity reset
occurring in all threads appears suspicious but should be benign since
they all write the same thing - 0.
|
|
|
|
The burst particle abused a zero mass to circumvent the effects of aging.
Instead use an explicit virtual flag to suppress aging, change busrt_cb
to ignore all virtual particles instead of only its center. Previously
burst_cb would thrust other bursts like any other particle, and this was
incorrect. Now burst centers are always stationary, even when they overlap
other bursts.
|
|
introduces create_context() and destroy_context() methods, and adds a
'void *context' first parameter to the module methods.
If a module doesn't supply create_context() then NULL is simply passed
around as the context, so trivial modules can continue to only implement
render_fragment().
A subsequent commit will update the modules to encapsulate their global
state in module-specific contexts.
|
|
Adding more context to the name in anticipation of adding a prepare_frame()
method to the module struct.
|
|
Make consistent with the source directory structure naming.
|
|
|
|
|
|
|
|
discards draw_pixel(), introduces helpers.h and a convenience
function for bounds checking and oob extermination. Move makergb
to helpers.h, draw.h gets removed in a later commit.
|
|
If a z-buffer is added these checks will need to be done independent from and
prior to drawing. Also it's silly to makergb() pixels which can't be drawn.
|
|
The relative path broke out-of-tree builds.
Previously the following:
$ mkdir /tmp/foo
$ cd /tmp/foo
$ ~/src/rototiller/configure
$ make
Would fail to compile unable to locate the headers in
~/rototiller/src
This fixes it.
|
|
Restoring some organizational sanity since adopting autotools.
|