Age | Commit message (Collapse) | Author |
|
sig_t collides with some signals-related system header on macos.
Just prefix it under the sig namespace.. leaving sig_ops alone
for now, but maybe they'll become sig_sig_ops in the future too.
Note nothing in master actually uses libs/sig currently, but I
have an experimental branch with a dusty module using it.
|
|
Nothing uses libs/sig yet, but this will probably become an issue
once that changes.
|
|
Added a triangle wave
|
|
This builds minimally upon the existing sine wave code,
just use the sign to drive the signal high or low.
Wikipedia shows a third state for 0 values, but that's for a -1..+1
signal. I'm producing all 0-1 signals as it's more convenient for
this application, but it seems like it would be awkward to return
.5f for the 0 case. So 0 is being treated as just another positive
value; high.
|
|
Provides improved ergonomics when using the bulitin ops, and much
appreciated arity and type checking.
|
|
Added some rudimentary refcounting so sig_t's can be readily shared
by multiple sig_t's.
|
|
This assumes the input value is always 0-1, but may be used to produce
values in any signed range, mapped linearly to the input.
|
|
Added a simple test exercising pow and round
|
|
The flexible array of void *'s would just align to a pointer,
which may not be safe for all members of whatever gets shoved in
here.
In an effort to make it more robust, make it an array of a junk
drawer union of types.
|
|
(Ab)uses rand_r by feeding ticks_ms as seedp for pseudo-random
numbers deterministically derived from ticks_ms.
|
|
Now hz can vary with time as well...
|
|
This adds a small framework of sorts for creating and composing signal
generators.
Two generators are implemented at this time; sig_ops_sin and sig_ops_mult
sig_ops_sin accepts a hz variable and will produce a sine wave of that
frequency.
sig_ops_mult accepts two sig_t generators and multiplies their outputs
Callers may construct their own sig_ops_t ops structs and supply them to
sig_new(), but it's expected that libs/sig will grow a collection of
commonly used generators which can then be used by simply passing their
sig_ops_$foo to sig_new().
See the test code at the bottom of libs/sig/sig.c for some contrived
sample usage. Note by composing multiple sig_ops_sin generators with
a sig_ops_mult generator, one can already easily construct a synth-like
LFO generator.
Some obvious todos are to add triangle/sawtooth/square wave generators.
More compositional generators may be interesting as well, like additive
and subtractive for example. Those will need to implement clipping, as
it's expected that the generators *always* stay within unity (0-1).
No modules use this yet, but I expect to wire this up to rtv for driving
knobs.
|