Age | Commit message (Collapse) | Author |
|
Originally it seemed sensible to make these units of bytes, for
flexibility reasons.
But it's advantageous for everything to be able to assume pixels
are always 4-byte/32-bit aligned. Having the stride/pitch be in
bytes of units made it theoretically possible to produce
unaligned rows of pixels, which would break that assumption.
I don't think anything was ever actually producing such things,
and I've added some asserts to the {sdl,drm}_fb.c page
acquisition code to go fatal on such pages.
This change required going through all the modules and get rid of
their uint32_t vs. void* dances and other such 1-byte vs. 4-byte
scaling arithmetic.
Code is simpler now, and probably faster in some cases. And now
allows future work to just assume things cna always occur 4-bytes
at a time without concern for unaligned accesses.
|
|
Largely mechanical rename of librototiller -> libtil, but
introducing a til_ prefix to all librototiller (now libtil)
functions and types where a rototiller prefix was absent.
This is just a step towards a more libized librototiller, and til
is just a nicer to type/read prefix than rototiller_.
|
|
This is a first approximation of separating the core modules and
threaded rendering from the cli-centric rototiller program and
its sdl+drm video backends.
Unfortunately this seemed to require switching over to libtool
archives (.la) to permit consolidating the per-lib and
per-module .a files into the librototiller.a and linking just
with librototiller.a to depend on the aggregate of
libs+modules+librototiller-glue in a simple fashion.
If an alternative to .la comes up I will switch over to it,
using libtool really slows down the build process.
Those are implementation/build system details though. What's
important in these changes is establishing something resembling a
librototiller API boundary, enabling creating alternative
frontends which vendor this tree as a submodule and link just to
librototiller.{la,a} for all the modules+threaded rendering of
them, while providing their own fb_ops_t for outputting into, and
their own settings applicators for driving the modules setup.
|
|
The existing code conflated the rendered frame dimensions with
what's essentially the virtual camera's film dimensions. That
resulted in a viewing frustum depending on the rendered frame
dimensions. Smaller frames (like in the montage module) would
show a smaller viewport into the same scene.
Now the view into the scene always shows the same viewport in
terms of the frustum dimensions for a given combination of
focal_length and film_{width,height}.
The rendered frame is essentially a sampling of the 2D plane
(the virtual film) intersecting the frustum.
Nothing is done to try enforce a specific aspect ratio or any
such magic. The caller is expected to manage this for now, or
just ignore it and let the output be stretched when the aspect
ratio of the output doesn't match the virtual film's aspect
ratio.
In the future it might be interesting to support letter boxing or
such things for preserving the film's aspect ratio.
For now the ray module just lets things be stretched, with
hard-coded film dimensions of something approximately consistent
with the past viewport.
The ray module could make some effort to fit the hard-coded film
dimensions to the runtime aspect ratio for the frame to be
rendered, tweaking things as needed but generally preserving the
general hard-coded dimensions. Allowing the frustum to be
minimally adjusted to fit the circumstances... that might also be
worth shoving into libray. Something of a automatic fitting
mode for the camera.
|
|
color banding has been quite visible, and somewhat expected with a
direct conversion from the linear float color space to the 8-bit
integral rgb color components.
A simple lookup table is used here to non-linearly map the values, table
generation is taken from Greg Ward's REAL PIXELS gem in Graphics Gems II.
|
|
Missed the sentinel, oops
|
|
|
|
Oops! This should have made it into b5bc96, been sitting
in my tree.
|
|
This is the first step of breaking out all the core rendering stuffs
into reusable libraries and making modules purely compositional,
consumers of various included rendering/effects libraries.
Expect multiple modules leveraging libray for a variety of scenes and
such. Also expect compositions mixing the various libraries for more
interesting visuals.
|