Age | Commit message (Collapse) | Author |
|
When there's a bare-value setting turned into a nested settings
instance, there's no key onhand for labeling the instance.
But such nameless settings are basically array elements only
positionally accessed. This helper produces labels in that style
for such settings by taking the container settings label and
adding [$idx] to the end.
These labels aren't really used as more than a debugging aid at
the moment. But module contexts already have paths in main, and
it seems like these settings instance labels will likely become
the name components in constructing those paths.
|
|
Currently in rototiller the only (de)serialization format of
settings is the args strings, so this is a rather critical piece
to get in for recursive settings to really be usable.
This is a quick and dirty implementation utilizing
open_memstream() which despite being POSIX has spotty support (I
don't think MacOS has it for instance). So that's probably
something to rip out in the future.
Nonetheless, this moves things forward and works fine on GNU.
|
|
This commit pivots everything over to using desc->container as
the target settings instance when adding settings, as well as
actually assigning the settings container @ desc create.
Given nothing is actually triggering settings heirarchies yet (no
specs set as_nested_settings) this shouldn't actually result in
any realized functional difference, yet. The settings pointer
being placed in desc->container should be identical to what was
getting used before.
|
|
There needs to be more flexibility in the value checking
enforcement.
This is just a quick blunt-hammer fix to not trip over nested
settings values which will be huge undeterministic messes vs.
what's likely just a set of simple presets in the spec.values[]
The individual leaf settings will still be checked if they
specify values. So this change just stops even bothering to
check unless the setting is a leaf.
This area needs more work in general, see comments.
For instance right now we can't just pass in arbitrary floats for
settings which list float values, not if that arbitrary float
isn't a member of the list. In some circumstances that's the
right thing to do, as in the module can only work with the
presets.
But most of the time, the module would be perfectly happy with e.g.
foo=.3379 with foo's spec.values[] = { .01, .1, .25, .75, 1} so
the check fails. That's dumb, and interferes with the creative
process when you're just poking different numbers into the
settings to see what happens.
TODO
|
|
Getter for accessing til_settings_t.num
With recursive settings modules will start using settings
instances to represent things like lists of module names.
(modules/compose::layers for instance)
For those cases they'll want to know the number of settings in
the instance before iterating across getting their values
positionally.
|
|
For recursive settings the individual setting being described
needs to get added to a potentially different settings instance
than the one being operated on at the top of the current
setup_func phase.
The settings instance being passed around for a setup_func to
operate on is constified, mainly to try ensure modules don't
start directly mucking with the settings. They're supposed to
just describe what they want next and iterate back and forth,
with the front-end creating the settings from the returned descs
however is appropriate, eventually building up the settings to
completion.
But since it's the setup_func that decides which settings
instance is appropriate for containing the setting.. at some
point it must associate a settings instance with the desc it's
producing, one that is going to be necessarily written to.
So here I'm just turning the existing til_setting_desc_t to a
"spec", unchanged. And introducing a new til_setting_desc_t
embedding the spec, accompanied by a non-const til_settings_t*
"container".
Now what setup_funcs use to express settings are a spec,
otherwise identically to before. Instead of cloning a desc to
allocate it for returning to the front-end, the desc is created
from a spec with the target settings instance passed in.
This turns the desc step where we take a constified settings
instance and cast it into a non-const a more formal act of going
from spec->desc, binding the spec to a specific settings
instance. It will also serve to isolate that hacky cast to a
til_settings function, and all the accessors of
til_setting_desc_t needing to operate on the containing settings
instance can just do so.
As of this commit, the container pointer is just sitting in the
desc_t but isn't being made use of or even assigned yet. This is
just to minimize the amount of churn happening in this otherwise
mostly mechanical and sprawling commit.
There's also been some small changes surrounding the desc
generators and plumbing of the settings instance where there
previously wasn't any. It's unclear to me if desc generators
will stay desc generators or turn into spec generators. For now
those are mostly just used by the drm_fb stuff anyways, modules
haven't made use of them, so they can stay a little crufty
harmlessly for now.
|
|
The core thing here is rather than turning a bare value into a
key as I was doing before - we just leave the bare value as a
bare value and its setting must be located positionally via
get_value_by_idx since there's no key.
Existing callers that used to get_key() positionally now
get_value_by_idx() positionally all the same, except it's the
value instead of the key. This is mostly done for things like
the module or fb name at the front of a settings instance.
The impetus for this change is partially just
cosmetic/ergonomics, but it's also rather strange for what's
really a key-less value to be treated as a value-less key. It
was also awkward to talk/reason about on the road to recursive
settings where bare values would be supported as a standalone
settings instance if properly escaped...
This also adds unescaping of keys, and adds a dependency on the
somewhat linux-specific open_memstream() which may need changing
in the future (see comments).
|
|
setup_func isn't formally defined for libtil, but
setup_interactively() defacto establishes it and
til_module_t.setup() reflects the same signature and calling
convention except with til_settings_t constified.
This change makes them all consistent in this regard, but there
should probably be a formal typedef added for the function.
The reason for constifying this is I don't want setup functions
directly manipulating the settings instance. In the case of
rototiller::setup_interactively() we ensure the stdio-based
interactive setup is always the side doing the manipulation of
the settings. For a libtil-user like glimmer, it's slightly
different beast with GTK+ in the loop, but by preventing the
setup_funcs from messing directly with the settings (instead
having to describe what they want done iteratively), the
front-end always gets its opportunity to maintain its state while
doing the described things.
Of course, this is mostly a lie, and within libtil the constified
til_settings_t gets cast away to modify it in places. But
keeping that limited to within libtil is tolerable IMO. We just
don't want to see such casts in module code.
|
|
Preparatory commit for recursive settings going cray-cray with
escaping. At least single-quote these so it's directly
copy-and-pasteable into a shell prompt.
|
|
When this is set, the setting is itself to be a settings instance
that the frontend must create and place in the relevant
til_setting_t.value_as_nested_settings.
This commit implements that frontend portion in
setup_interactively() for the rototiller frontend.
No setup_func() yet attempts to make use of this stuff. There's
probably more change needed before that can happen, specifically
the setup_func() likely must always produce a til_settings_t* to
indicate which settings instance is currently relevant to the
frontend. Without setup_func() telling the frontend, the
frontend has basically no other way of knowing when the backend
setup_func() has moved up/down the heirarchy at the current
iteration.
|
|
Preparatory commit for settings hierarchies.
|
|
This adds a mandatory label string to til_setttings_new() and
updates call sites accordingly.
For now the root-level settings created by main.c are simply
named "module" and "video" respectively. Any nested settings
creations on behalf of modules will be labeled using the module's
name the settings are being created for use with.
This might evolve with time, for now it's just a minimum churn
kind of decision. I can see it changing such that the top-level
settings also become labeled by the module/video driver name
rather than the obtuse "module" "video" strings.
How these will be leveraged is unclear presently. At the least
it'll be nice to have a label for debugging til_settings_t
heirarchies once recursive settings support lands. In a sense
this is a preparatory commit for that work. But I could see the
labels ending up in serialization contents as markup/syntactic
sugar just to self-document things as well.
There might also be a need to address til_settings_t instances in
the settings heirarchy, which may be something like a
"label/label/label/label" path style thing - though there'd be a
need to deal with name collisions in that approach.
I'm just thinking a bit about how knobs will become addressed
when those become a real thing. The settings label heirarchy
might be the convenient place to name everything in a tree, which
knobs could then inherit their parent paths from under which
their respective knob labels will reside. For the whole name
collision issue there could just be some builtin settings keys
for overriding the automatic module name labeling, something
like:
--module=compose,layers=checkers\,label=first\,fill_module=shapes:checkers\,label=second\,fill_module=shapes
would result in:
/module/first/shapes
/module/second/shapes
or in a world where the root settings weren't just named "module"
and "video":
/compose/first/shapes
/compose/second/shapes
then if there were knobs under checkers and shapes, say checkers
had a "foo" knob and checkers had a "bar" knob, they'd be under
.knobs in each directory:
/compose/first/.knobs/foo
/compose/first/shapes/.knobs/bar
/compose/second/.knobs/foo
/compose/second/shapes/.knobs/bar
something along those lines, and of course if compose had knobs
they'd be under /compose/.knobs
This is just a brain dump and will surely all change before
implemented.
|
|
Existing code was passing 0 which turns into the number of
cores/threads.
That's fine when compose isn't running nested in an already
threaded render, but falls down in something like checkers
w/fill_module=compose since checkers is already threading. But
when checkers creates its fill_module context, it's careful to
pass 1 for n_cpus to prevent that kind of thing. With this
change that no longer falls apart.
|
|
Finishes build/fs part of modules/rocket->modules/rkt rename
started in previous commit.
|
|
It's annoying to have the til module called rocket, and the sync
tracker protocol/library called rocket, so let's at least
differentiate it in code/comments/textual discussion.
Plus this results in shorter module context paths i.e.:
/rkt:scene
/rkt/compose/drizzle:rain
/rkt/compose/drizzle:viscosity
/rkt/compose/plato:spin_rate
/rkt/compose/plato:orbit_rate
vs.
/rocket:scene
etc...
These names are shown in the editor, and they'll tend to be long
but let's at least get the root name down to three chars this
way.
A rename of the files and build system update will come in a
subsequent commit
|
|
Upstream merged my TCP_NODELAY PR, so let's get it in rototiller.
Note I'm blindly setting USE_NODELAY now, but it might actually
break the build for win32 - still need to test that.
|
|
With taps more or less fully implemented, it seems appropriate to
get rid of the stubbed out knobs for now.
Taps don't express the same things about range and usage knobs
aspired towards, but they don't preclude adding such things
either. But it seems clear that the way knobs were stubbed won't
be complementing taps as things stand currently to add those
aspects.
|
|
There should probably be others for the ball radiuses, and colors
|
|
this needs more work to really be useful...
clockstep should be tapped, there should probably be a T tap to
control the emitters' cycle
im doubtful how useful this module will generally be though. It
really needs interactions with other things, like fluid going
around pixbounce
|
|
Just some obvious taps...
Note the actual usable range for viscosity is quite small, like
no greater than .05 really works. There still needs to be some
way to describe bounds on the taps, that or normalizing things to
always be 0-1 or -1..+1 kind of thing, and expecting the modules
or the tap api to map those to the sane ranges.
Just leave everything raw for now, wiring up the taps at least
opens up experimentation and getting a feel for what makes most
sense.
|
|
Part of me wants to give the blinds arbitrary angle instead of
the vert/horiz options. But part of the beauty of blinds is the
jaggy-free aliasing-free sharp edges by virtue of always being
orthonormal using whole pixels.
Maybe in the future there could be a orientation setting where
you pick horiz/vert/angular. Then only when angular does it get
a theta tap and use angled blinds with anti-aliased imperfect
edges...
|
|
This adds a rudimentary but functional rocket module for
sequencing "tapped" variables in rototiller modules according to
a timeline via GNU Rocket editors.
Currently this only supports a single seq_module= as a setting
which will be used for rendering. Any tapped variables present
in the nested modules under seq_module will be available for
sequencing, and should automatically appear in a connected rocket
editor.
If you specify connect=off then rocket sync tracks will be read
from the filesystem if present. It's a bit clumsy as-is due to
how the GNU Rocket library handles this currently. There's a
"base" label concept for the virtual rocket device, and the
tracks are intended to be files in a directory named using that
base= setting.
The way you create those track files is by triggering a remote
export from the editor while connected. The location of the
directory is relative to the cwd of the rototiller process, and
you can't specify absolute paths as the base= setting to be
explicit about where things go. The setting isn't really a path,
as that's not what the library wants it to be. It's an area in
need of improvement.
In any case, as long as you start with the same base= setting,
from the same CWD, as when you did the remote export, you can
re-run with connect=off and the exported tracks will be used
automagically and things should replay without the editor
connected.
If you start with connect=on, which is the default, you need to
have the editor already running. Otherwise the rocket module
will fail @ context create, and you'll get a confusing error
about being unable to allocate memory. This is just for now, the
context create needs to start returning an errno instead of just
the context pointer so the error messages can be more informative
now that context create may be doing complicated things like
connecting to sockets.
Another thing to improve is probably having the module just
reconnect periodically if connect=on but it failed @ context
create. It could just start anyways and not fail the context
create at all there, and just start working once you get the
editor online. That'd be a better user experience.
This is a good first step regardless...
|
|
This just stubs out a rocket meta module that renders with
another module.
Future commits will integrate GNU Rocket here.
When recursive settings formally lands you'll be able to nest as
much settings content as necessary for the underlying module
used, as part of the rocket settings. That should enable
describing stuff like complex compose scenarios for rocket to
sequence.
|
|
There needs to be a way for a meta module like rocket to take
ownership of pipes immediately upon instantiation. Since the
pipes are created on demand as they become tapped by the modules
using htem, the simplest way to do this is to register some
callbacks with the ability to intercept the pipe creation in
terms of ownership and driving tap control etc.
This commit forms a minimal implementation of that, with the
ability to have a single intercepter hooked into a given stream.
It's a first-come-first-served situation, but that should suffice
for now since the rocket meta module would be the entrypoint for
such constructions. It then calls into another module to produce
on the stream, after it'll already have its hooks registered.
There might be a need for stacking hooks to let multiple modules
control pipes. GNU Rocket for instance only deals with
floats/doubles, and doesn't make it particularly easy to work on
higher order concepts like say orbiting a vector around a point
spatially. It might make sense to allow compositing of editors
where there's rocket controlling the simple floats, and another
doing dimensional/spatial stuff, with separate stacked meta
modules accomodating those editors. But that's putting the cart
before the horse, let's do the stupid simple thing for now and
see what this is like.
|
|
The driving tap's owner and pipe's owner are decoupled. When
tearing down an owner from a stream, any pipes its taps are
driving should also just go away. Otherwise its taps could
linger on pipes it doesn't own, which would be a UAF bug.
If the pipe is still needed, it'll just get recreated by another
tap. So there's a small perf hit, but this shouldn't be a
continuos kind of occurrence.
|
|
Some clarifications
|
|
|
|
When a driving tap becomes inactive, til_stream_tap() should be
able to notice and replace the driver.
An example driving tap becoming inactive would be a GNU Rocket
track that once had keys in it, but then had them all deleted.
This should set the inactive flag so the tap's automation can
take over. This gives the user at the Rocket editor the ability
to both take over from the tap automation and surrender control
back, by populating vs. emptying the respective track.
|
|
In order to implement something like a rocket module there needs
to be a way to iterate the pipes in the stream, and take
owernship of them when not already owned by rocket.
The way rocket's API works is you lookup tracks by name at
runtime. The rocket module will be a meta module that calls into
another module for rendering, arbitrarily configured via a rocket
setting a la checkers::fill_module.
So it won't be until the underlying modules do some rendering
that their taps get their respective pipes established in the
stream. Then the rocket module can look at all the pipes and for
any it doesn't own yet, it can get the tracks for those names and
take ownership while stowing the track handle in owner_foo for
the pipe.
While iterating all the pipes, the pipes already owned will have
the tracks readily available which can produce the values to
stick in the tap.
Something like that anyways, the til_stream_t api changes in this
commit are all preparatory for a rocket module.
|
|
Just clarify some verbiage, and actually assert type+n_elems
match. Note mismatch also fallsthrough to an -EINVAL just in
case asserts() have been compiled out (-DNDEBUG).
|
|
It seems likely that pipe owners will need not only a way to
differentiate themselves via the owner pointer, but also
somewhere to register a pipe-specific reference.
There probably needs to be a result pointer added for storing the
owner_foo when the owner taps, so the owner can make use of it.
|
|
We need a way to identify owners of taps when cleaning up
their containing contexts, especially once they're hanging off
streams.
|
|
Let's make it so til_module_context_t as returned from
til_module_context_new() can immediately be freed via
til_module_context_free().
Previously it was only after the context propagated out to
til_module_context_create() that it could be freed that way, as
that was where the module member was being assigned.
With this change, and wiring up the module pointer into
til_module_t.create_context() as well for convenient providing to
til_module_context_new(), til_module_t.create_context() error
paths can easily cleanup via `return til_module_context_free()`
But this does require the til_module_t.destroy_context() be able
to safely handle partially constructed contexts, since the
mid-create failure freeing won't necessarily have all the members
initialized. There will probably be some NULL derefs to fix up,
but at least the contexts are zero-initialized @ new.
|
|
Preparatory commit for experimenting with a GNU Rocket
integration for controlling the stream pipes on a timeline.
Since rocket doesn't support things like arbitrary strings, it's
not a natural fit for rototiller where the obvious thing would be
to describe scene compositions as settings strings as if you were
invoking rototiller.
But a temporary hack might be to just tell a rocket module
up-front all the scenes as settings strings you provide to its
setup. Those get assigned numeric identifiers, then rocket
tracks can control when they come on/off numerically. It just
requires describing all the scenes up front rather than in the
pattern editor which is less than ideal.
Being able to experiment with this half-ass solution may prove
useful anyways, and shouldn't be too much work.
|
|
For strictly logical fragments (e.g. tiled fragmenters) there
won't be any ops, and that's even documented in the comments.
But the snapshot and reclaim functoins were assuming the ops
would be non-NULL. Snapshot in particular trips on this
assumption when a module snapshots a subfragment, like drizzle in
montage. I'm surprised I haven't encountered this crash
before...
|
|
It was assumed (n_modules - n_overlayable) would give the number
of non-overlayable modules appropriate as base layers. But with
the skipping of hermetic and experimental modules the base_idx
could be out of reach leaving layers NULL after the loop, which
will segfault later when strlen() assumes it's non-NULL.
This commit does the simple thing and also counts the unusable
modules to subtract from those eligible for base layers along
with n_overlayable.
|
|
Just some banal paperwork...
|
|
Don't make experimental modules available to the
regular/potentially-interactive setup routine.
There should be a flag like --experimental to generally enable
these.
|
|
As with the other composite modules, if --experimental happens
this will need adjustment to honor it.
For now let's just prevent things from breaking when those
modules start appearing.
|
|
This only omits the modules from the random layers
Note the texture_values list is enumerated in compose_setup,
so there's no corresponding change needed there. It might make
sense to change that to a runtime-discovered list though, I think
that was done in the pre-flags era.
|
|
This allows explicit listing of such modules as channels, while
protecting the automagic/defaults scenario.
If there's a future --experimental flag or such added, then the
TIL_MODULE_EXPERIMENTAL check will have to become conditional on
it.
|
|
This turns --print-pipes into a more top-like display. Redirect
the FPS on stderr somewhere else to get less flickering
e.g. 2>/dev/null
pipes print to stdout.
|
|
TIL_MODULE_HERMETIC:
There's likely to be some new modules that are more
orchestration style components having external
runtime dependencies. Think stuff like a sequencer
talking to GNU Rocket, or something that plays back
pattern data from external files.
Those would need a GNU Rocket process to talk to
somewhere, or input pattern file paths. So they
shouldn't participate in stuff like random rtv shows
unless they have some fallbacks for when the dependencies
are unavailable. For pattern data it's realistic to
include some builtin patterns to fallback on, but we're
not there yet. So this flag when specified should opt
out of things like rtv or checkers fill_module random
selections.
TIL_MODULE_EXPERIMENTAL:
Theres no current way to have knowingly
unstable/unfinished modules available in-tree for
development/collaboration purposes without having them
also make stuff like rtv unstable. Modules having this
flag set should be excluded from random inclusion without
a --experimental or some such runtime flag specified.
This commit only assigns values and names for the flags, it
doesn't implement anything.
|
|
This was mostly done out of convenience at the expense of turning
the fragment struct into more of a junk drawer.
But properly cleaning up owned stream pipes on context destroy
makes the inappropriateness of being part of til_fb_fragment_t
glaringly apparent.
Now the stream is just a separate thing passed to context create,
with a reference kept in the context for use throughout. Cleanup
of the owned pipes on the stream supplied to context create is
automagic when the context gets destroyed.
Note that despite there being a stream in the module context, the
stream to use is still supplied to all the rendering family
functions (prepare/render/finish) and it's the passed-in stream
which should be used by these functions. This is done to support
the possibility of switching out the stream frame-to-frame, which
may be interesting. Imagine doing things like a latent stream
and a future stream and switching between them on the fly for
instance. If there's a sequencing composite module, it could
flip between multiple sets of tracks or jump around multiple
streams with the visuals immediately flipping accordingly.
This should fix the --print-pipes crashing issues caused by lack
of cleanup when contexts were removed (like rtv does so often).
|
|
This is a rudimentary integration of the new til_stream_t into
rototiller. If the stream is going to continue living in
til_fb_fragment_t, the fragmenters and other nested frame
scenarios likely need to be updated to copy the stream through to
make the pipes available to the nested renders.
--print-pipes dumps the values found at the pipes' driver taps
to stdout on every frame.
Right now there's no way to externally write these values, but
with --print-pipes you can already see where things are going and
it's a nice visibility tool for tapped variables in modules.
Only stars and plato tap variables presently, but that will
improve.
|
|
With --print-pipes there will be a potential shitload of stuff
getting printed out, and it'd be nice to easily distinguish that
content from the FPS counter.
Since stderr is normally less buffered than stdout (line
buffered) not lose debugging information, just put the
low-bandwidth periodic FPS print there instead. This leaves
stdout for --print-pipes output which occurs every frame *and*
may have a lot of content per print.
|
|
Particularly for simple boolean args it's desirable to just
access their values directly in the args without any further
cooking required. Rather than pointlessly duplicating those
cases, just give visibility into the raw args.
|
|
Now that til_stream_t is implemented, let's wire up the taps.
Note that nothing actually creates the stream and puts it in the
fragment yet, so stream is still always NULL for these
effectively turning this into a NOP.
|
|
Until now there's just been a forward declared type for
til_fb_fragment_t.stream's type, and it's been completely unused.
The purpose of the stream is to provide a continous inter-frame
object where information can be stored pertaining to the stream
of frames.
Right now, that information is limited to emergent "pipes" formed
by using taps against a given stream. Taps at new paths in the
stream become added as pipes for those paths, with the
responsible tap hooked in as the driving tap. Taps at existing
paths become diverted to the driving taps, enabling potential for
external drivers for tapped variables.
This commit only adds the implementation, nothing is actually
using it yet.
|
|
The purpose of the context path is to aid in locating the context
instance. The initial application of this will be in service of
the taps, which require their module's path as a sort of
containing directory of the tap name. It'd be convenient to
simply add the path hash with the tap hash to produce the tap's
"absolute path" hash when looking up in the hash table.
|