summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/modules/roto/roto.c315
1 files changed, 296 insertions, 19 deletions
diff --git a/src/modules/roto/roto.c b/src/modules/roto/roto.c
index 28e27e1..ac6fa4f 100644
--- a/src/modules/roto/roto.c
+++ b/src/modules/roto/roto.c
@@ -14,12 +14,14 @@
#define FIXED_BITS 11 /* fractional bits */
#define FIXED_EXP (1 << FIXED_BITS) /* 2^FIXED_BITS */
#define FIXED_MASK (FIXED_EXP - 1) /* fractional part mask */
-#define FIXED_COS(_rad) costab[(_rad) % FIXED_TRIG_LUT_SIZE]
-#define FIXED_SIN(_rad) sintab[(_rad) % FIXED_TRIG_LUT_SIZE]
+#define FIXED_COS(_rad) roto_costab[(_rad) % FIXED_TRIG_LUT_SIZE]
+#define FIXED_SIN(_rad) roto_sintab[(_rad) % FIXED_TRIG_LUT_SIZE]
#define FIXED_MULT(_a, _b) (((_a) * (_b)) >> FIXED_BITS)
#define FIXED_NEW(_i) ((_i) << FIXED_BITS)
#define FIXED_TO_INT(_f) ((_f) >> FIXED_BITS)
+#define ROTO_TEXTURE_SIZE 256
+
typedef struct color_t {
int r, g, b;
} color_t;
@@ -28,36 +30,45 @@ typedef struct roto_context_t {
til_module_context_t til_module_context;
unsigned r, rr;
color_t palette[2];
+ til_module_context_t *fill_module_context;
+ til_fb_fragment_t fill_fb;
} roto_context_t;
-static int32_t costab[FIXED_TRIG_LUT_SIZE], sintab[FIXED_TRIG_LUT_SIZE];
-static uint8_t texture[256][256];
+typedef struct roto_setup_t {
+ til_setup_t til_setup;
+
+ const til_module_t *fill_module;
+ til_setup_t *fill_module_setup;
+} roto_setup_t;
+static int32_t roto_costab[FIXED_TRIG_LUT_SIZE], roto_sintab[FIXED_TRIG_LUT_SIZE];
+static uint8_t roto_texture[ROTO_TEXTURE_SIZE][ROTO_TEXTURE_SIZE];
-static void init_roto(uint8_t texture[256][256], int32_t *costab, int32_t *sintab)
+
+static void init_roto(uint8_t texture[ROTO_TEXTURE_SIZE][ROTO_TEXTURE_SIZE], int32_t *roto_costab, int32_t *roto_sintab)
{
int x, y, i;
/* Generate simple checker pattern texture, nothing clever, feel free to play! */
/* If you modify texture on every frame instead of only @ initialization you can
* produce some neat output. These values are indexed into palette[] below. */
- for (y = 0; y < 128; y++) {
- for (x = 0; x < 128; x++)
+ for (y = 0; y < ROTO_TEXTURE_SIZE >> 1; y++) {
+ for (x = 0; x < ROTO_TEXTURE_SIZE >> 1; x++)
texture[y][x] = 1;
- for (; x < 256; x++)
+ for (; x < ROTO_TEXTURE_SIZE; x++)
texture[y][x] = 0;
}
- for (; y < 256; y++) {
- for (x = 0; x < 128; x++)
+ for (; y < ROTO_TEXTURE_SIZE; y++) {
+ for (x = 0; x < ROTO_TEXTURE_SIZE >> 1; x++)
texture[y][x] = 0;
- for (; x < 256; x++)
+ for (; x < ROTO_TEXTURE_SIZE; x++)
texture[y][x] = 1;
}
/* Generate fixed-point cos & sin LUTs. */
for (i = 0; i < FIXED_TRIG_LUT_SIZE; i++) {
- costab[i] = ((cos((double)2*M_PI*i/FIXED_TRIG_LUT_SIZE))*FIXED_EXP);
- sintab[i] = ((sin((double)2*M_PI*i/FIXED_TRIG_LUT_SIZE))*FIXED_EXP);
+ roto_costab[i] = ((cos((double)2*M_PI*i/FIXED_TRIG_LUT_SIZE))*FIXED_EXP);
+ roto_sintab[i] = ((sin((double)2*M_PI*i/FIXED_TRIG_LUT_SIZE))*FIXED_EXP);
}
}
@@ -70,13 +81,39 @@ static til_module_context_t * roto_create_context(const til_module_t *module, ti
if (!initialized) {
initialized = 1;
- init_roto(texture, costab, sintab);
+ init_roto(roto_texture, roto_costab, roto_sintab);
}
ctxt = til_module_context_new(module, sizeof(roto_context_t), stream, seed, ticks, n_cpus, setup);
if (!ctxt)
return NULL;
+ if (((roto_setup_t *)setup)->fill_module) {
+ const til_module_t *module = ((roto_setup_t *)setup)->fill_module;
+
+ if (til_module_create_contexts(module,
+ stream,
+ seed,
+ ticks,
+ n_cpus,
+ ((roto_setup_t *)setup)->fill_module_setup,
+ 1,
+ &ctxt->fill_module_context) < 0)
+ return til_module_context_free(&ctxt->til_module_context);
+
+ ctxt->fill_fb = (til_fb_fragment_t){
+ .buf = malloc(ROTO_TEXTURE_SIZE * ROTO_TEXTURE_SIZE * sizeof(uint32_t)),
+
+ .frame_width = ROTO_TEXTURE_SIZE,
+ .frame_height = ROTO_TEXTURE_SIZE,
+ .width = ROTO_TEXTURE_SIZE,
+ .height = ROTO_TEXTURE_SIZE,
+ .pitch = ROTO_TEXTURE_SIZE,
+ };
+ if (!ctxt->fill_fb.buf)
+ return til_module_context_free(&ctxt->til_module_context);
+ }
+
ctxt->r = rand_r(&seed);
ctxt->rr = rand_r(&seed);
@@ -84,6 +121,16 @@ static til_module_context_t * roto_create_context(const til_module_t *module, ti
}
+static void roto_destroy_context(til_module_context_t *context)
+{
+ roto_context_t *ctxt = (roto_context_t *)context;
+
+ free(ctxt->fill_fb.buf);
+ til_module_context_free(ctxt->fill_module_context);
+ free(ctxt);
+}
+
+
/* linearly interpolate between two colors, alpha is fixed-point value 0-FIXED_EXP. */
static inline color_t lerp_color(color_t *a, color_t *b, int alpha)
{
@@ -105,7 +152,7 @@ static inline color_t lerp_color(color_t *a, color_t *b, int alpha)
/* Return the bilinearly interpolated color palette[texture[ty][tx]] (Anti-Aliasing) */
/* tx, ty are fixed-point for fractions, palette colors are also in fixed-point format. */
-static uint32_t bilerp_color(uint8_t texture[256][256], color_t *palette, int tx, int ty)
+static uint32_t bilerp_color(uint8_t texture[ROTO_TEXTURE_SIZE][ROTO_TEXTURE_SIZE], color_t *palette, int tx, int ty)
{
uint8_t itx = FIXED_TO_INT(tx), ity = FIXED_TO_INT(ty);
color_t n_color, s_color, color;
@@ -181,6 +228,100 @@ static uint32_t bilerp_color(uint8_t texture[256][256], color_t *palette, int tx
}
+static inline color_t * pixel32_to_color(uint32_t pixel, color_t *res_color)
+{
+ *res_color = (color_t){
+ .r = FIXED_NEW((pixel >> 16) & 0xff),
+ .g = FIXED_NEW((pixel >> 8) & 0xff),
+ .b = FIXED_NEW((pixel) & 0xff),
+ };
+
+ return res_color;
+}
+
+
+/* Return the bilinearly interpolated color palette[texture[ty][tx]] (Anti-Aliasing) */
+/* tx, ty are fixed-point for fractions, palette colors are also in fixed-point format. */
+static uint32_t bilerp_color_pixel32(uint32_t texture[ROTO_TEXTURE_SIZE][ROTO_TEXTURE_SIZE], int tx, int ty)
+{
+ uint8_t itx = FIXED_TO_INT(tx), ity = FIXED_TO_INT(ty);
+ color_t n_color, s_color, color;
+ int x_alpha, y_alpha;
+ uint32_t nw, ne, sw, se;
+
+ /* We need the 4 texels constituting a 2x2 square pattern to interpolate.
+ * A point tx,ty can only intersect one texel; one corner of the 2x2 square.
+ * Where relative to the corner's center the intersection occurs determines which corner has been intersected,
+ * and the other corner texels may then be addressed relative to that corner.
+ * Alpha values must also be determined for both axis, these values describe the position between
+ * the 2x2 texel centers the intersection occurred, aka the weight or bias.
+ * Once the two alpha values are known, linear interpolation between the texel colors is trivial.
+ */
+
+ if ((ty & FIXED_MASK) > (FIXED_EXP >> 1)) {
+ y_alpha = ty & (FIXED_MASK >> 1);
+
+ if ((tx & (FIXED_MASK)) > (FIXED_EXP >> 1)) {
+ nw = texture[ity][itx];
+ ne = texture[ity][(uint8_t)(itx + 1)];
+ sw = texture[(uint8_t)(ity + 1)][itx];
+ se = texture[(uint8_t)(ity + 1)][(uint8_t)(itx + 1)];
+
+ x_alpha = tx & (FIXED_MASK >> 1);
+ } else {
+ ne = texture[ity][itx];
+ nw = texture[ity][(uint8_t)(itx - 1)];
+ se = texture[(uint8_t)(ity + 1)][itx];
+ sw = texture[(uint8_t)(ity + 1)][(uint8_t)(itx - 1)];
+
+ x_alpha = (FIXED_EXP >> 1) + (tx & (FIXED_MASK >> 1));
+ }
+ } else {
+ y_alpha = (FIXED_EXP >> 1) + (ty & (FIXED_MASK >> 1));
+
+ if ((tx & (FIXED_MASK)) > (FIXED_EXP >> 1)) {
+ sw = texture[ity][itx];
+ se = texture[ity][(uint8_t)(itx + 1)];
+ nw = texture[(uint8_t)(ity - 1)][itx];
+ ne = texture[(uint8_t)(ity - 1)][(uint8_t)(itx + 1)];
+
+ x_alpha = tx & (FIXED_MASK >> 1);
+ } else {
+ se = texture[ity][itx];
+ sw = texture[ity][(uint8_t)(itx - 1)];
+ ne = texture[(uint8_t)(ity - 1)][itx];
+ nw = texture[(uint8_t)(ity - 1)][(uint8_t)(itx - 1)];
+
+ x_alpha = (FIXED_EXP >> 1) + (tx & (FIXED_MASK >> 1));
+ }
+ }
+
+ /* Skip interpolation of same colors, a substantial optimization with plain textures like the checker pattern */
+ if (nw == ne) {
+ if (ne == sw && sw == se)
+ return sw;
+
+ pixel32_to_color(nw, &n_color);
+ } else {
+ n_color = lerp_color(pixel32_to_color(nw, &(color_t){}),
+ pixel32_to_color(ne, &(color_t){}),
+ x_alpha);
+ }
+
+ if (sw == se) {
+ pixel32_to_color(sw, &s_color);
+ } else {
+ s_color = lerp_color(pixel32_to_color(sw, &(color_t){}),
+ pixel32_to_color(se, &(color_t){}),
+ x_alpha);
+ }
+
+ color = lerp_color(&n_color, &s_color, y_alpha);
+
+ return (FIXED_TO_INT(color.r) << 16) | (FIXED_TO_INT(color.g) << 8) | FIXED_TO_INT(color.b);
+}
+
+
/* prepare a frame for concurrent rendering */
static void roto_prepare_frame(til_module_context_t *context, til_stream_t *stream, unsigned ticks, til_fb_fragment_t **fragment_ptr, til_frame_plan_t *res_frame_plan)
{
@@ -202,6 +343,13 @@ static void roto_prepare_frame(til_module_context_t *context, til_stream_t *stre
ctxt->palette[1].g = (FIXED_MULT(FIXED_COS(ctxt->rr / 2), FIXED_NEW(127)) + FIXED_NEW(128));
ctxt->palette[1].b = (FIXED_MULT(FIXED_SIN(ctxt->rr), FIXED_NEW(127)) + FIXED_NEW(128));
}
+
+ if (ctxt->fill_module_context) {
+ til_fb_fragment_t *fb_ptr = &ctxt->fill_fb;
+
+ ctxt->fill_fb.cleared = 0;
+ til_module_render(ctxt->fill_module_context, stream, ticks, &fb_ptr);
+ }
}
@@ -233,11 +381,24 @@ static void roto_render_fragment(til_module_context_t *context, til_stream_t *st
x_cos_r = x_cos_r_init;
x_sin_r = x_sin_r_init;
- for (int x = 0; x < fragment->width; x++, buf++) {
- *buf = bilerp_color(texture, ctxt->palette, x_sin_r - y_cos_r, y_sin_r + x_cos_r);
+ if (ctxt->fill_module_context) {
+ for (int x = 0; x < fragment->width; x++, buf++) {
+ /* TODO: it would be interesting to support an overlay mode where we alpha blend this into the existing surface,
+ * so fill_modules that were overlayable would overlay in the rotated+tiled form...
+ */
+ *buf = bilerp_color_pixel32((uint32_t (*)[ROTO_TEXTURE_SIZE])ctxt->fill_fb.buf, x_sin_r - y_cos_r, y_sin_r + x_cos_r);
+
+ x_cos_r += cos_r;
+ x_sin_r += sin_r;
+ }
- x_cos_r += cos_r;
- x_sin_r += sin_r;
+ } else {
+ for (int x = 0; x < fragment->width; x++, buf++) {
+ *buf = bilerp_color(roto_texture, ctxt->palette, x_sin_r - y_cos_r, y_sin_r + x_cos_r);
+
+ x_cos_r += cos_r;
+ x_sin_r += sin_r;
+ }
}
buf += fragment->stride;
@@ -247,10 +408,126 @@ static void roto_render_fragment(til_module_context_t *context, til_stream_t *st
}
+static void roto_setup_free(til_setup_t *setup)
+{
+ roto_setup_t *s = (roto_setup_t *)setup;
+
+ if (s) {
+ til_setup_free(s->fill_module_setup);
+ free(setup);
+ }
+}
+
+
+static int roto_setup(const til_settings_t *settings, til_setting_t **res_setting, const til_setting_desc_t **res_desc, til_setup_t **res_setup)
+{
+ const char *fill_module, *fill_module_name;
+ const til_settings_t *fill_module_settings;
+ til_setting_t *fill_module_setting;
+ const char *fill_module_values[] = {
+ "none",
+ "blinds",
+ "checkers",
+ "moire",
+ "pixbounce",
+ "plato",
+ "roto",
+ "shapes",
+ "spiro",
+ "stars",
+ NULL
+ };
+ int r;
+
+ r = til_settings_get_and_describe_value(settings,
+ &(til_setting_spec_t){
+ .name = "Filled module (\"none\" for classic roto)",
+ .key = "fill_module",
+ .preferred = fill_module_values[0],
+ .values = fill_module_values,
+ .annotations = NULL,
+ .as_nested_settings = 1,
+ },
+ &fill_module, /* XXX: this isn't really of direct use now that it's a potentially full-blown settings string, see fill_module_settings */
+ res_setting,
+ res_desc);
+ if (r)
+ return r;
+
+ assert(res_setting && *res_setting);
+ assert((*res_setting)->value_as_nested_settings);
+
+ fill_module_settings = (*res_setting)->value_as_nested_settings;
+ fill_module_name = til_settings_get_value_by_idx(fill_module_settings, 0, &fill_module_setting);
+
+ if (!fill_module_name || !fill_module_setting->desc) {
+ r = til_setting_desc_new(fill_module_settings,
+ &(til_setting_spec_t){
+ .name = "Fill module name",
+ .preferred = "none",
+ .as_label = 1,
+ },
+ res_desc);
+ if (r < 0)
+ return r;
+
+ *res_setting = fill_module_name ? fill_module_setting : NULL;
+
+ return 1;
+ }
+
+ if (strcasecmp(fill_module_name, "none")) {
+ const til_module_t *mod = til_lookup_module(fill_module_name);
+
+ if (!mod) {
+ *res_setting = fill_module_setting;
+
+ return -EINVAL;
+ }
+
+ if (mod->setup) {
+ r = mod->setup(fill_module_settings, res_setting, res_desc, NULL);
+ if (r)
+ return r;
+ }
+ }
+
+
+
+ if (res_setup) {
+ roto_setup_t *setup;
+
+ setup = til_setup_new(settings, sizeof(*setup), roto_setup_free);
+ if (!setup)
+ return -ENOMEM;
+
+ if (strcasecmp(fill_module_name, "none")) {
+ setup->fill_module = til_lookup_module(fill_module_name);
+ if (!setup->fill_module) {
+ til_setup_free(&setup->til_setup);
+ return -EINVAL;
+ }
+
+ r = til_module_setup_finalize(setup->fill_module, fill_module_settings, &setup->fill_module_setup);
+ if (r < 0) {
+ til_setup_free(&setup->til_setup);
+ return r;
+ }
+ }
+
+ *res_setup = &setup->til_setup;
+ }
+
+ return 0;
+}
+
+
til_module_t roto_module = {
.create_context = roto_create_context,
+ .destroy_context = roto_destroy_context,
.prepare_frame = roto_prepare_frame,
.render_fragment = roto_render_fragment,
+ .setup = roto_setup,
.name = "roto",
.description = "Anti-aliased tiled texture rotation (threaded)",
.author = "Vito Caputo <vcaputo@pengaru.com>",
© All Rights Reserved