summaryrefslogtreecommitdiff
path: root/modules/roto
diff options
context:
space:
mode:
Diffstat (limited to 'modules/roto')
-rw-r--r--modules/roto/Makefile.am4
-rw-r--r--modules/roto/roto.c305
-rw-r--r--modules/roto/roto.h9
3 files changed, 0 insertions, 318 deletions
diff --git a/modules/roto/Makefile.am b/modules/roto/Makefile.am
deleted file mode 100644
index 08d8522..0000000
--- a/modules/roto/Makefile.am
+++ /dev/null
@@ -1,4 +0,0 @@
-noinst_LIBRARIES = libroto.a
-libroto_a_SOURCES = roto.c roto.h
-libroto_a_CFLAGS = @ROTOTILLER_CFLAGS@
-libroto_a_CPPFLAGS = @ROTOTILLER_CFLAGS@ -I../../
diff --git a/modules/roto/roto.c b/modules/roto/roto.c
deleted file mode 100644
index d789f85..0000000
--- a/modules/roto/roto.c
+++ /dev/null
@@ -1,305 +0,0 @@
-#include <stdint.h>
-#include <inttypes.h>
-#include <math.h>
-
-#include "fb.h"
-#include "rototiller.h"
-
-/* Copyright (C) 2016 Vito Caputo <vcaputo@pengaru.com> */
-
-/* Some defines for the fixed-point stuff in render(). */
-#define FIXED_TRIG_LUT_SIZE 4096 /* size of the cos/sin look-up tables */
-#define FIXED_BITS 11 /* fractional bits */
-#define FIXED_EXP (1 << FIXED_BITS) /* 2^FIXED_BITS */
-#define FIXED_MASK (FIXED_EXP - 1) /* fractional part mask */
-#define FIXED_COS(_rad) costab[(_rad) % FIXED_TRIG_LUT_SIZE]
-#define FIXED_SIN(_rad) sintab[(_rad) % FIXED_TRIG_LUT_SIZE]
-#define FIXED_MULT(_a, _b) (((_a) * (_b)) >> FIXED_BITS)
-#define FIXED_NEW(_i) ((_i) << FIXED_BITS)
-#define FIXED_TO_INT(_f) ((_f) >> FIXED_BITS)
-
-typedef struct color_t {
- int r, g, b;
-} color_t;
-
-
-/* linearly interpolate between two colors, alpha is fixed-point value 0-FIXED_EXP. */
-static inline color_t lerp_color(color_t *a, color_t *b, int alpha)
-{
- /* TODO: This could be done without multiplies with a bit of effort,
- * maybe a simple table mapping integer color deltas to shift values
- * for shifting alpha which then gets simply added? A table may not even
- * be necessary, use the order of the delta to derive how much to shift
- * alpha?
- */
- color_t c = {
- .r = a->r + FIXED_MULT(alpha, b->r - a->r),
- .g = a->g + FIXED_MULT(alpha, b->g - a->g),
- .b = a->b + FIXED_MULT(alpha, b->b - a->b),
- };
-
- return c;
-}
-
-
-/* Return the bilinearly interpolated color palette[texture[ty][tx]] (Anti-Aliasing) */
-/* tx, ty are fixed-point for fractions, palette colors are also in fixed-point format. */
-static uint32_t bilerp_color(uint8_t texture[256][256], color_t *palette, int tx, int ty)
-{
- uint8_t itx = FIXED_TO_INT(tx), ity = FIXED_TO_INT(ty);
- color_t n_color, s_color, color;
- int x_alpha, y_alpha;
- uint8_t nw, ne, sw, se;
-
- /* We need the 4 texels constituting a 2x2 square pattern to interpolate.
- * A point tx,ty can only intersect one texel; one corner of the 2x2 square.
- * Where relative to the corner's center the intersection occurs determines which corner has been intersected,
- * and the other corner texels may then be addressed relative to that corner.
- * Alpha values must also be determined for both axis, these values describe the position between
- * the 2x2 texel centers the intersection occurred, aka the weight or bias.
- * Once the two alpha values are known, linear interpolation between the texel colors is trivial.
- */
-
- if ((ty & FIXED_MASK) > (FIXED_EXP >> 1)) {
- y_alpha = ty & (FIXED_MASK >> 1);
-
- if ((tx & (FIXED_MASK)) > (FIXED_EXP >> 1)) {
- nw = texture[ity][itx];
- ne = texture[ity][(uint8_t)(itx + 1)];
- sw = texture[(uint8_t)(ity + 1)][itx];
- se = texture[(uint8_t)(ity + 1)][(uint8_t)(itx + 1)];
-
- x_alpha = tx & (FIXED_MASK >> 1);
- } else {
- ne = texture[ity][itx];
- nw = texture[ity][(uint8_t)(itx - 1)];
- se = texture[(uint8_t)(ity + 1)][itx];
- sw = texture[(uint8_t)(ity + 1)][(uint8_t)(itx - 1)];
-
- x_alpha = (FIXED_EXP >> 1) + (tx & (FIXED_MASK >> 1));
- }
- } else {
- y_alpha = (FIXED_EXP >> 1) + (ty & (FIXED_MASK >> 1));
-
- if ((tx & (FIXED_MASK)) > (FIXED_EXP >> 1)) {
- sw = texture[ity][itx];
- se = texture[ity][(uint8_t)(itx + 1)];
- nw = texture[(uint8_t)(ity - 1)][itx];
- ne = texture[(uint8_t)(ity - 1)][(uint8_t)(itx + 1)];
-
- x_alpha = tx & (FIXED_MASK >> 1);
- } else {
- se = texture[ity][itx];
- sw = texture[ity][(uint8_t)(itx - 1)];
- ne = texture[(uint8_t)(ity - 1)][itx];
- nw = texture[(uint8_t)(ity - 1)][(uint8_t)(itx - 1)];
-
- x_alpha = (FIXED_EXP >> 1) + (tx & (FIXED_MASK >> 1));
- }
- }
-
- /* Skip interpolation of same colors, a substantial optimization with plain textures like the checker pattern */
- if (nw == ne) {
- if (ne == sw && sw == se) {
- return (FIXED_TO_INT(palette[sw].r) << 16) | (FIXED_TO_INT(palette[sw].g) << 8) | FIXED_TO_INT(palette[sw].b);
- }
- n_color = palette[nw];
- } else {
- n_color = lerp_color(&palette[nw], &palette[ne], x_alpha);
- }
-
- if (sw == se) {
- s_color = palette[sw];
- } else {
- s_color = lerp_color(&palette[sw], &palette[se], x_alpha);
- }
-
- color = lerp_color(&n_color, &s_color, y_alpha);
-
- return (FIXED_TO_INT(color.r) << 16) | (FIXED_TO_INT(color.g) << 8) | FIXED_TO_INT(color.b);
-}
-
-
-static void init_roto(uint8_t texture[256][256], int32_t *costab, int32_t *sintab)
-{
- int x, y, i;
-
- /* Generate simple checker pattern texture, nothing clever, feel free to play! */
- /* If you modify texture on every frame instead of only @ initialization you can
- * produce some neat output. These values are indexed into palette[] below. */
- for (y = 0; y < 128; y++) {
- for (x = 0; x < 128; x++)
- texture[y][x] = 1;
- for (; x < 256; x++)
- texture[y][x] = 0;
- }
- for (; y < 256; y++) {
- for (x = 0; x < 128; x++)
- texture[y][x] = 0;
- for (; x < 256; x++)
- texture[y][x] = 1;
- }
-
- /* Generate fixed-point cos & sin LUTs. */
- for (i = 0; i < FIXED_TRIG_LUT_SIZE; i++) {
- costab[i] = ((cos((double)2*M_PI*i/FIXED_TRIG_LUT_SIZE))*FIXED_EXP);
- sintab[i] = ((sin((double)2*M_PI*i/FIXED_TRIG_LUT_SIZE))*FIXED_EXP);
- }
-}
-
-
-/* Draw a rotating checkered 256x256 texture into fragment. (32-bit version) */
-static void roto32(fb_fragment_t *fragment)
-{
- static int32_t costab[FIXED_TRIG_LUT_SIZE], sintab[FIXED_TRIG_LUT_SIZE];
- static uint8_t texture[256][256];
- static int initialized;
- static color_t palette[2];
- static unsigned r, rr;
-
- int y_cos_r, y_sin_r, x_cos_r, x_sin_r, x_cos_r_init, x_sin_r_init, cos_r, sin_r;
- int x, y, stride = fragment->stride / 4, width = fragment->width, height = fragment->height;
- uint32_t *buf = fragment->buf;
-
- if (!initialized) {
- initialized = 1;
-
- init_roto(texture, costab, sintab);
- }
-
- /* This is all done using fixed-point in the hopes of being faster, and yes assumptions
- * are being made WRT the overflow of tx/ty as well, only tested on x86_64. */
- cos_r = FIXED_COS(r);
- sin_r = FIXED_SIN(r);
-
- /* Vary the colors, this is just a mashup of sinusoidal rgb values. */
- palette[0].r = (FIXED_MULT(FIXED_COS(rr), FIXED_NEW(127)) + FIXED_NEW(128));
- palette[0].g = (FIXED_MULT(FIXED_SIN(rr / 2), FIXED_NEW(127)) + FIXED_NEW(128));
- palette[0].b = (FIXED_MULT(FIXED_COS(rr / 3), FIXED_NEW(127)) + FIXED_NEW(128));
-
- palette[1].r = (FIXED_MULT(FIXED_SIN(rr / 2), FIXED_NEW(127)) + FIXED_NEW(128));
- palette[1].g = (FIXED_MULT(FIXED_COS(rr / 2), FIXED_NEW(127)) + FIXED_NEW(128));
- palette[1].b = (FIXED_MULT(FIXED_SIN(rr), FIXED_NEW(127)) + FIXED_NEW(128));
-
- /* The dimensions are cut in half and negated to center the rotation. */
- /* The [xy]_{sin,cos}_r variables are accumulators to replace multiplication with addition. */
- x_cos_r_init = FIXED_MULT(-FIXED_NEW((width / 2)), cos_r);
- x_sin_r_init = FIXED_MULT(-FIXED_NEW((width / 2)), sin_r);
-
- y_cos_r = FIXED_MULT(-FIXED_NEW((height / 2)), cos_r);
- y_sin_r = FIXED_MULT(-FIXED_NEW((height / 2)), sin_r);
-
- for (y = 0; y < height; y++) {
-
- x_cos_r = x_cos_r_init;
- x_sin_r = x_sin_r_init;
-
- for (x = 0; x < width; x++, buf++) {
- *buf = bilerp_color(texture, palette, x_sin_r - y_cos_r, y_sin_r + x_cos_r);
-
- x_cos_r += cos_r;
- x_sin_r += sin_r;
- }
-
- buf += stride;
- y_cos_r += cos_r;
- y_sin_r += sin_r;
- }
-
- // This governs the rotation and color cycle.
- r += FIXED_TO_INT(FIXED_MULT(FIXED_SIN(rr), FIXED_NEW(16)));
- rr += 2;
-}
-
-
-/* Draw a rotating checkered 256x256 texture into fragment. (64-bit version) */
-static void roto64(fb_fragment_t *fragment)
-{
- static int32_t costab[FIXED_TRIG_LUT_SIZE], sintab[FIXED_TRIG_LUT_SIZE];
- static uint8_t texture[256][256];
- static int initialized;
- static color_t palette[2];
- static unsigned r, rr;
-
- int y_cos_r, y_sin_r, x_cos_r, x_sin_r, x_cos_r_init, x_sin_r_init, cos_r, sin_r;
- int x, y, stride = fragment->stride / 8, width = fragment->width, height = fragment->height;
- uint64_t *buf = (uint64_t *)fragment->buf;
-
- if (!initialized) {
- initialized = 1;
-
- init_roto(texture, costab, sintab);
- }
-
- /* This is all done using fixed-point in the hopes of being faster, and yes assumptions
- * are being made WRT the overflow of tx/ty as well, only tested on x86_64. */
- cos_r = FIXED_COS(r);
- sin_r = FIXED_SIN(r);
-
- /* Vary the colors, this is just a mashup of sinusoidal rgb values. */
- palette[0].r = (FIXED_MULT(FIXED_COS(rr), FIXED_NEW(127)) + FIXED_NEW(128));
- palette[0].g = (FIXED_MULT(FIXED_SIN(rr / 2), FIXED_NEW(127)) + FIXED_NEW(128));
- palette[0].b = (FIXED_MULT(FIXED_COS(rr / 3), FIXED_NEW(127)) + FIXED_NEW(128));
-
- palette[1].r = (FIXED_MULT(FIXED_SIN(rr / 2), FIXED_NEW(127)) + FIXED_NEW(128));
- palette[1].g = (FIXED_MULT(FIXED_COS(rr / 2), FIXED_NEW(127)) + FIXED_NEW(128));
- palette[1].b = (FIXED_MULT(FIXED_SIN(rr), FIXED_NEW(127)) + FIXED_NEW(128));
-
- /* The dimensions are cut in half and negated to center the rotation. */
- /* The [xy]_{sin,cos}_r variables are accumulators to replace multiplication with addition. */
- x_cos_r_init = FIXED_MULT(-FIXED_NEW((width / 2)), cos_r);
- x_sin_r_init = FIXED_MULT(-FIXED_NEW((width / 2)), sin_r);
-
- y_cos_r = FIXED_MULT(-FIXED_NEW((height / 2)), cos_r);
- y_sin_r = FIXED_MULT(-FIXED_NEW((height / 2)), sin_r);
-
- width /= 2; /* Since we're processing 64-bit words (2 pixels) at a time */
-
- for (y = 0; y < height; y++) {
-
- x_cos_r = x_cos_r_init;
- x_sin_r = x_sin_r_init;
-
- for (x = 0; x < width; x++, buf++) {
- uint64_t p;
-
- p = bilerp_color(texture, palette, x_sin_r - y_cos_r, y_sin_r + x_cos_r);
-
- x_cos_r += cos_r;
- x_sin_r += sin_r;
-
- p |= (uint64_t)(bilerp_color(texture, palette, x_sin_r - y_cos_r, y_sin_r + x_cos_r)) << 32;
-
- *buf = p;
-
- x_cos_r += cos_r;
- x_sin_r += sin_r;
- }
-
- buf += stride;
- y_cos_r += cos_r;
- y_sin_r += sin_r;
- }
-
- // This governs the rotation and color cycle.
- r += FIXED_TO_INT(FIXED_MULT(FIXED_SIN(rr), FIXED_NEW(16)));
- rr += 2;
-}
-
-
-rototiller_renderer_t roto32_renderer = {
- .render = roto32,
- .name = "roto32",
- .description = "Anti-aliased tiled texture rotation (32-bit)",
- .author = "Vito Caputo <vcaputo@pengaru.com>",
- .license = "GPLv2",
-};
-
-
-rototiller_renderer_t roto64_renderer = {
- .render = roto64,
- .name = "roto64",
- .description = "Anti-aliased tiled texture rotation (64-bit)",
- .author = "Vito Caputo <vcaputo@pengaru.com>",
- .license = "GPLv2",
-};
diff --git a/modules/roto/roto.h b/modules/roto/roto.h
deleted file mode 100644
index 84a66a9..0000000
--- a/modules/roto/roto.h
+++ /dev/null
@@ -1,9 +0,0 @@
-#ifndef _ROTO_H
-#define _ROTO_H
-
-#include "fb.h"
-
-void roto64(fb_fragment_t *fragment);
-void roto32(fb_fragment_t *fragment);
-
-#endif
© All Rights Reserved