summaryrefslogtreecommitdiff
path: root/modules/ray/ray_camera.c
diff options
context:
space:
mode:
Diffstat (limited to 'modules/ray/ray_camera.c')
-rw-r--r--modules/ray/ray_camera.c85
1 files changed, 0 insertions, 85 deletions
diff --git a/modules/ray/ray_camera.c b/modules/ray/ray_camera.c
deleted file mode 100644
index 0703c2e..0000000
--- a/modules/ray/ray_camera.c
+++ /dev/null
@@ -1,85 +0,0 @@
-#include "fb.h"
-
-#include "ray_camera.h"
-#include "ray_euler.h"
-
-
-/* Produce a vector from the provided orientation vectors and proportions. */
-static ray_3f_t project_corner(ray_3f_t *forward, ray_3f_t *left, ray_3f_t *up, float focal_length, float horiz, float vert)
-{
- ray_3f_t tmp;
- ray_3f_t corner;
-
- corner = ray_3f_mult_scalar(forward, focal_length);
- tmp = ray_3f_mult_scalar(left, horiz);
- corner = ray_3f_add(&corner, &tmp);
- tmp = ray_3f_mult_scalar(up, vert);
- corner = ray_3f_add(&corner, &tmp);
-
- return ray_3f_normalize(&corner);
-}
-
-
-/* Produce vectors for the corners of the entire camera frame, used for interpolation. */
-static void project_corners(ray_camera_t *camera, ray_camera_frame_t *frame)
-{
- ray_3f_t forward, left, up, right, down;
- float half_horiz = (float)camera->width / 2.0f;
- float half_vert = (float)camera->height / 2.0f;
-
- ray_euler_basis(&camera->orientation, &forward, &up, &left);
- right = ray_3f_negate(&left);
- down = ray_3f_negate(&up);
-
- frame->nw = project_corner(&forward, &left, &up, camera->focal_length, half_horiz, half_vert);
- frame->ne = project_corner(&forward, &right, &up, camera->focal_length, half_horiz, half_vert);
- frame->se = project_corner(&forward, &right, &down, camera->focal_length, half_horiz, half_vert);
- frame->sw = project_corner(&forward, &left, &down, camera->focal_length, half_horiz, half_vert);
-}
-
-
-/* Begin a frame for the fragment of camera projection, initializing frame and ray. */
-void ray_camera_frame_begin(ray_camera_t *camera, fb_fragment_t *fragment, ray_ray_t *ray, ray_camera_frame_t *frame)
-{
- /* References are kept to the camera, fragment, and ray to be traced.
- * The ray is maintained as we step through the frame, that is the
- * purpose of this api.
- *
- * Since the ray direction should be a normalized vector, the obvious
- * implementation is a bit costly. The camera frame api hides this
- * detail so we can explore interpolation techniques to potentially
- * lessen the per-pixel cost.
- */
- frame->camera = camera;
- frame->fragment = fragment;
- frame->ray = ray;
-
- frame->x = frame->y = 0;
-
- /* From camera->orientation and camera->focal_length compute the vectors
- * through the viewport's corners, and place these normalized vectors
- * in frame->(nw,ne,sw,se).
- *
- * These can than be interpolated between to produce the ray vectors
- * throughout the frame's fragment. The efficient option of linear
- * interpolation will not maintain the unit vector length, so to
- * produce normalized interpolated directions will require the costly
- * normalize function.
- *
- * I'm hoping a simple length correction table can be used to fixup the
- * linearly interpolated vectors to make them unit vectors with just
- * scalar multiplication instead of the sqrt of normalize.
- */
- project_corners(camera, frame);
-
- frame->x_delta = 1.0f / (float)camera->width;
- frame->y_delta = 1.0f / (float)camera->height;
- frame->x_alpha = frame->x_delta * (float)fragment->x;
- frame->y_alpha = frame->y_delta * (float)fragment->y;
-
- frame->cur_w = ray_3f_nlerp(&frame->nw, &frame->sw, frame->y_alpha);
- frame->cur_e = ray_3f_nlerp(&frame->ne, &frame->se, frame->y_alpha);
-
- ray->origin = camera->position;
- ray->direction = frame->cur_w;
-}
© All Rights Reserved