diff options
author | Vito Caputo <vcaputo@gnugeneration.com> | 2017-01-18 17:14:52 -0800 |
---|---|---|
committer | Vito Caputo <vcaputo@gnugeneration.com> | 2017-01-18 17:31:44 -0800 |
commit | 524db0cf19648e3c7c78d3e73103b7a0bdcd6bfc (patch) | |
tree | 6fd682629904a210927797c92d956c208666b03a /modules/roto/roto.c | |
parent | ee2073d4e411555aba878277131b56f7eb562c84 (diff) |
*: move source into src/ subdir
Restoring some organizational sanity since adopting autotools.
Diffstat (limited to 'modules/roto/roto.c')
-rw-r--r-- | modules/roto/roto.c | 305 |
1 files changed, 0 insertions, 305 deletions
diff --git a/modules/roto/roto.c b/modules/roto/roto.c deleted file mode 100644 index d789f85..0000000 --- a/modules/roto/roto.c +++ /dev/null @@ -1,305 +0,0 @@ -#include <stdint.h> -#include <inttypes.h> -#include <math.h> - -#include "fb.h" -#include "rototiller.h" - -/* Copyright (C) 2016 Vito Caputo <vcaputo@pengaru.com> */ - -/* Some defines for the fixed-point stuff in render(). */ -#define FIXED_TRIG_LUT_SIZE 4096 /* size of the cos/sin look-up tables */ -#define FIXED_BITS 11 /* fractional bits */ -#define FIXED_EXP (1 << FIXED_BITS) /* 2^FIXED_BITS */ -#define FIXED_MASK (FIXED_EXP - 1) /* fractional part mask */ -#define FIXED_COS(_rad) costab[(_rad) % FIXED_TRIG_LUT_SIZE] -#define FIXED_SIN(_rad) sintab[(_rad) % FIXED_TRIG_LUT_SIZE] -#define FIXED_MULT(_a, _b) (((_a) * (_b)) >> FIXED_BITS) -#define FIXED_NEW(_i) ((_i) << FIXED_BITS) -#define FIXED_TO_INT(_f) ((_f) >> FIXED_BITS) - -typedef struct color_t { - int r, g, b; -} color_t; - - -/* linearly interpolate between two colors, alpha is fixed-point value 0-FIXED_EXP. */ -static inline color_t lerp_color(color_t *a, color_t *b, int alpha) -{ - /* TODO: This could be done without multiplies with a bit of effort, - * maybe a simple table mapping integer color deltas to shift values - * for shifting alpha which then gets simply added? A table may not even - * be necessary, use the order of the delta to derive how much to shift - * alpha? - */ - color_t c = { - .r = a->r + FIXED_MULT(alpha, b->r - a->r), - .g = a->g + FIXED_MULT(alpha, b->g - a->g), - .b = a->b + FIXED_MULT(alpha, b->b - a->b), - }; - - return c; -} - - -/* Return the bilinearly interpolated color palette[texture[ty][tx]] (Anti-Aliasing) */ -/* tx, ty are fixed-point for fractions, palette colors are also in fixed-point format. */ -static uint32_t bilerp_color(uint8_t texture[256][256], color_t *palette, int tx, int ty) -{ - uint8_t itx = FIXED_TO_INT(tx), ity = FIXED_TO_INT(ty); - color_t n_color, s_color, color; - int x_alpha, y_alpha; - uint8_t nw, ne, sw, se; - - /* We need the 4 texels constituting a 2x2 square pattern to interpolate. - * A point tx,ty can only intersect one texel; one corner of the 2x2 square. - * Where relative to the corner's center the intersection occurs determines which corner has been intersected, - * and the other corner texels may then be addressed relative to that corner. - * Alpha values must also be determined for both axis, these values describe the position between - * the 2x2 texel centers the intersection occurred, aka the weight or bias. - * Once the two alpha values are known, linear interpolation between the texel colors is trivial. - */ - - if ((ty & FIXED_MASK) > (FIXED_EXP >> 1)) { - y_alpha = ty & (FIXED_MASK >> 1); - - if ((tx & (FIXED_MASK)) > (FIXED_EXP >> 1)) { - nw = texture[ity][itx]; - ne = texture[ity][(uint8_t)(itx + 1)]; - sw = texture[(uint8_t)(ity + 1)][itx]; - se = texture[(uint8_t)(ity + 1)][(uint8_t)(itx + 1)]; - - x_alpha = tx & (FIXED_MASK >> 1); - } else { - ne = texture[ity][itx]; - nw = texture[ity][(uint8_t)(itx - 1)]; - se = texture[(uint8_t)(ity + 1)][itx]; - sw = texture[(uint8_t)(ity + 1)][(uint8_t)(itx - 1)]; - - x_alpha = (FIXED_EXP >> 1) + (tx & (FIXED_MASK >> 1)); - } - } else { - y_alpha = (FIXED_EXP >> 1) + (ty & (FIXED_MASK >> 1)); - - if ((tx & (FIXED_MASK)) > (FIXED_EXP >> 1)) { - sw = texture[ity][itx]; - se = texture[ity][(uint8_t)(itx + 1)]; - nw = texture[(uint8_t)(ity - 1)][itx]; - ne = texture[(uint8_t)(ity - 1)][(uint8_t)(itx + 1)]; - - x_alpha = tx & (FIXED_MASK >> 1); - } else { - se = texture[ity][itx]; - sw = texture[ity][(uint8_t)(itx - 1)]; - ne = texture[(uint8_t)(ity - 1)][itx]; - nw = texture[(uint8_t)(ity - 1)][(uint8_t)(itx - 1)]; - - x_alpha = (FIXED_EXP >> 1) + (tx & (FIXED_MASK >> 1)); - } - } - - /* Skip interpolation of same colors, a substantial optimization with plain textures like the checker pattern */ - if (nw == ne) { - if (ne == sw && sw == se) { - return (FIXED_TO_INT(palette[sw].r) << 16) | (FIXED_TO_INT(palette[sw].g) << 8) | FIXED_TO_INT(palette[sw].b); - } - n_color = palette[nw]; - } else { - n_color = lerp_color(&palette[nw], &palette[ne], x_alpha); - } - - if (sw == se) { - s_color = palette[sw]; - } else { - s_color = lerp_color(&palette[sw], &palette[se], x_alpha); - } - - color = lerp_color(&n_color, &s_color, y_alpha); - - return (FIXED_TO_INT(color.r) << 16) | (FIXED_TO_INT(color.g) << 8) | FIXED_TO_INT(color.b); -} - - -static void init_roto(uint8_t texture[256][256], int32_t *costab, int32_t *sintab) -{ - int x, y, i; - - /* Generate simple checker pattern texture, nothing clever, feel free to play! */ - /* If you modify texture on every frame instead of only @ initialization you can - * produce some neat output. These values are indexed into palette[] below. */ - for (y = 0; y < 128; y++) { - for (x = 0; x < 128; x++) - texture[y][x] = 1; - for (; x < 256; x++) - texture[y][x] = 0; - } - for (; y < 256; y++) { - for (x = 0; x < 128; x++) - texture[y][x] = 0; - for (; x < 256; x++) - texture[y][x] = 1; - } - - /* Generate fixed-point cos & sin LUTs. */ - for (i = 0; i < FIXED_TRIG_LUT_SIZE; i++) { - costab[i] = ((cos((double)2*M_PI*i/FIXED_TRIG_LUT_SIZE))*FIXED_EXP); - sintab[i] = ((sin((double)2*M_PI*i/FIXED_TRIG_LUT_SIZE))*FIXED_EXP); - } -} - - -/* Draw a rotating checkered 256x256 texture into fragment. (32-bit version) */ -static void roto32(fb_fragment_t *fragment) -{ - static int32_t costab[FIXED_TRIG_LUT_SIZE], sintab[FIXED_TRIG_LUT_SIZE]; - static uint8_t texture[256][256]; - static int initialized; - static color_t palette[2]; - static unsigned r, rr; - - int y_cos_r, y_sin_r, x_cos_r, x_sin_r, x_cos_r_init, x_sin_r_init, cos_r, sin_r; - int x, y, stride = fragment->stride / 4, width = fragment->width, height = fragment->height; - uint32_t *buf = fragment->buf; - - if (!initialized) { - initialized = 1; - - init_roto(texture, costab, sintab); - } - - /* This is all done using fixed-point in the hopes of being faster, and yes assumptions - * are being made WRT the overflow of tx/ty as well, only tested on x86_64. */ - cos_r = FIXED_COS(r); - sin_r = FIXED_SIN(r); - - /* Vary the colors, this is just a mashup of sinusoidal rgb values. */ - palette[0].r = (FIXED_MULT(FIXED_COS(rr), FIXED_NEW(127)) + FIXED_NEW(128)); - palette[0].g = (FIXED_MULT(FIXED_SIN(rr / 2), FIXED_NEW(127)) + FIXED_NEW(128)); - palette[0].b = (FIXED_MULT(FIXED_COS(rr / 3), FIXED_NEW(127)) + FIXED_NEW(128)); - - palette[1].r = (FIXED_MULT(FIXED_SIN(rr / 2), FIXED_NEW(127)) + FIXED_NEW(128)); - palette[1].g = (FIXED_MULT(FIXED_COS(rr / 2), FIXED_NEW(127)) + FIXED_NEW(128)); - palette[1].b = (FIXED_MULT(FIXED_SIN(rr), FIXED_NEW(127)) + FIXED_NEW(128)); - - /* The dimensions are cut in half and negated to center the rotation. */ - /* The [xy]_{sin,cos}_r variables are accumulators to replace multiplication with addition. */ - x_cos_r_init = FIXED_MULT(-FIXED_NEW((width / 2)), cos_r); - x_sin_r_init = FIXED_MULT(-FIXED_NEW((width / 2)), sin_r); - - y_cos_r = FIXED_MULT(-FIXED_NEW((height / 2)), cos_r); - y_sin_r = FIXED_MULT(-FIXED_NEW((height / 2)), sin_r); - - for (y = 0; y < height; y++) { - - x_cos_r = x_cos_r_init; - x_sin_r = x_sin_r_init; - - for (x = 0; x < width; x++, buf++) { - *buf = bilerp_color(texture, palette, x_sin_r - y_cos_r, y_sin_r + x_cos_r); - - x_cos_r += cos_r; - x_sin_r += sin_r; - } - - buf += stride; - y_cos_r += cos_r; - y_sin_r += sin_r; - } - - // This governs the rotation and color cycle. - r += FIXED_TO_INT(FIXED_MULT(FIXED_SIN(rr), FIXED_NEW(16))); - rr += 2; -} - - -/* Draw a rotating checkered 256x256 texture into fragment. (64-bit version) */ -static void roto64(fb_fragment_t *fragment) -{ - static int32_t costab[FIXED_TRIG_LUT_SIZE], sintab[FIXED_TRIG_LUT_SIZE]; - static uint8_t texture[256][256]; - static int initialized; - static color_t palette[2]; - static unsigned r, rr; - - int y_cos_r, y_sin_r, x_cos_r, x_sin_r, x_cos_r_init, x_sin_r_init, cos_r, sin_r; - int x, y, stride = fragment->stride / 8, width = fragment->width, height = fragment->height; - uint64_t *buf = (uint64_t *)fragment->buf; - - if (!initialized) { - initialized = 1; - - init_roto(texture, costab, sintab); - } - - /* This is all done using fixed-point in the hopes of being faster, and yes assumptions - * are being made WRT the overflow of tx/ty as well, only tested on x86_64. */ - cos_r = FIXED_COS(r); - sin_r = FIXED_SIN(r); - - /* Vary the colors, this is just a mashup of sinusoidal rgb values. */ - palette[0].r = (FIXED_MULT(FIXED_COS(rr), FIXED_NEW(127)) + FIXED_NEW(128)); - palette[0].g = (FIXED_MULT(FIXED_SIN(rr / 2), FIXED_NEW(127)) + FIXED_NEW(128)); - palette[0].b = (FIXED_MULT(FIXED_COS(rr / 3), FIXED_NEW(127)) + FIXED_NEW(128)); - - palette[1].r = (FIXED_MULT(FIXED_SIN(rr / 2), FIXED_NEW(127)) + FIXED_NEW(128)); - palette[1].g = (FIXED_MULT(FIXED_COS(rr / 2), FIXED_NEW(127)) + FIXED_NEW(128)); - palette[1].b = (FIXED_MULT(FIXED_SIN(rr), FIXED_NEW(127)) + FIXED_NEW(128)); - - /* The dimensions are cut in half and negated to center the rotation. */ - /* The [xy]_{sin,cos}_r variables are accumulators to replace multiplication with addition. */ - x_cos_r_init = FIXED_MULT(-FIXED_NEW((width / 2)), cos_r); - x_sin_r_init = FIXED_MULT(-FIXED_NEW((width / 2)), sin_r); - - y_cos_r = FIXED_MULT(-FIXED_NEW((height / 2)), cos_r); - y_sin_r = FIXED_MULT(-FIXED_NEW((height / 2)), sin_r); - - width /= 2; /* Since we're processing 64-bit words (2 pixels) at a time */ - - for (y = 0; y < height; y++) { - - x_cos_r = x_cos_r_init; - x_sin_r = x_sin_r_init; - - for (x = 0; x < width; x++, buf++) { - uint64_t p; - - p = bilerp_color(texture, palette, x_sin_r - y_cos_r, y_sin_r + x_cos_r); - - x_cos_r += cos_r; - x_sin_r += sin_r; - - p |= (uint64_t)(bilerp_color(texture, palette, x_sin_r - y_cos_r, y_sin_r + x_cos_r)) << 32; - - *buf = p; - - x_cos_r += cos_r; - x_sin_r += sin_r; - } - - buf += stride; - y_cos_r += cos_r; - y_sin_r += sin_r; - } - - // This governs the rotation and color cycle. - r += FIXED_TO_INT(FIXED_MULT(FIXED_SIN(rr), FIXED_NEW(16))); - rr += 2; -} - - -rototiller_renderer_t roto32_renderer = { - .render = roto32, - .name = "roto32", - .description = "Anti-aliased tiled texture rotation (32-bit)", - .author = "Vito Caputo <vcaputo@pengaru.com>", - .license = "GPLv2", -}; - - -rototiller_renderer_t roto64_renderer = { - .render = roto64, - .name = "roto64", - .description = "Anti-aliased tiled texture rotation (64-bit)", - .author = "Vito Caputo <vcaputo@pengaru.com>", - .license = "GPLv2", -}; |