summaryrefslogtreecommitdiff
path: root/modules/ray/ray_camera.c
diff options
context:
space:
mode:
authorVito Caputo <vcaputo@gnugeneration.com>2016-12-13 07:57:56 -0800
committerVito Caputo <vcaputo@gnugeneration.com>2016-12-13 08:01:22 -0800
commit8340e615d46615894b44b4ffce5dc2dd86cbad40 (patch)
treeca9f82767d360f03e09425f21e35d0188eb52d1c /modules/ray/ray_camera.c
parent8add1663d9a02db2bc65224cdceb480733a81379 (diff)
ray: introduce a rudimentary ray tracer
My first ray tracer, it only has spheres, planes, and point light sources. No texture mapping, no soft shadows, no global illumination. This is all very basic right now, the camera movement is simple and boring, but sufficient for further development and optimization. I made some effort to support multiple CPUs, it should detect the number of CPUs in the system and use enough pthreads to keep them busy. Jacco Bikker's tutorial on flipcode was the original impetus to do this, and definitely served as a guide early on.
Diffstat (limited to 'modules/ray/ray_camera.c')
-rw-r--r--modules/ray/ray_camera.c85
1 files changed, 85 insertions, 0 deletions
diff --git a/modules/ray/ray_camera.c b/modules/ray/ray_camera.c
new file mode 100644
index 0000000..0703c2e
--- /dev/null
+++ b/modules/ray/ray_camera.c
@@ -0,0 +1,85 @@
+#include "fb.h"
+
+#include "ray_camera.h"
+#include "ray_euler.h"
+
+
+/* Produce a vector from the provided orientation vectors and proportions. */
+static ray_3f_t project_corner(ray_3f_t *forward, ray_3f_t *left, ray_3f_t *up, float focal_length, float horiz, float vert)
+{
+ ray_3f_t tmp;
+ ray_3f_t corner;
+
+ corner = ray_3f_mult_scalar(forward, focal_length);
+ tmp = ray_3f_mult_scalar(left, horiz);
+ corner = ray_3f_add(&corner, &tmp);
+ tmp = ray_3f_mult_scalar(up, vert);
+ corner = ray_3f_add(&corner, &tmp);
+
+ return ray_3f_normalize(&corner);
+}
+
+
+/* Produce vectors for the corners of the entire camera frame, used for interpolation. */
+static void project_corners(ray_camera_t *camera, ray_camera_frame_t *frame)
+{
+ ray_3f_t forward, left, up, right, down;
+ float half_horiz = (float)camera->width / 2.0f;
+ float half_vert = (float)camera->height / 2.0f;
+
+ ray_euler_basis(&camera->orientation, &forward, &up, &left);
+ right = ray_3f_negate(&left);
+ down = ray_3f_negate(&up);
+
+ frame->nw = project_corner(&forward, &left, &up, camera->focal_length, half_horiz, half_vert);
+ frame->ne = project_corner(&forward, &right, &up, camera->focal_length, half_horiz, half_vert);
+ frame->se = project_corner(&forward, &right, &down, camera->focal_length, half_horiz, half_vert);
+ frame->sw = project_corner(&forward, &left, &down, camera->focal_length, half_horiz, half_vert);
+}
+
+
+/* Begin a frame for the fragment of camera projection, initializing frame and ray. */
+void ray_camera_frame_begin(ray_camera_t *camera, fb_fragment_t *fragment, ray_ray_t *ray, ray_camera_frame_t *frame)
+{
+ /* References are kept to the camera, fragment, and ray to be traced.
+ * The ray is maintained as we step through the frame, that is the
+ * purpose of this api.
+ *
+ * Since the ray direction should be a normalized vector, the obvious
+ * implementation is a bit costly. The camera frame api hides this
+ * detail so we can explore interpolation techniques to potentially
+ * lessen the per-pixel cost.
+ */
+ frame->camera = camera;
+ frame->fragment = fragment;
+ frame->ray = ray;
+
+ frame->x = frame->y = 0;
+
+ /* From camera->orientation and camera->focal_length compute the vectors
+ * through the viewport's corners, and place these normalized vectors
+ * in frame->(nw,ne,sw,se).
+ *
+ * These can than be interpolated between to produce the ray vectors
+ * throughout the frame's fragment. The efficient option of linear
+ * interpolation will not maintain the unit vector length, so to
+ * produce normalized interpolated directions will require the costly
+ * normalize function.
+ *
+ * I'm hoping a simple length correction table can be used to fixup the
+ * linearly interpolated vectors to make them unit vectors with just
+ * scalar multiplication instead of the sqrt of normalize.
+ */
+ project_corners(camera, frame);
+
+ frame->x_delta = 1.0f / (float)camera->width;
+ frame->y_delta = 1.0f / (float)camera->height;
+ frame->x_alpha = frame->x_delta * (float)fragment->x;
+ frame->y_alpha = frame->y_delta * (float)fragment->y;
+
+ frame->cur_w = ray_3f_nlerp(&frame->nw, &frame->sw, frame->y_alpha);
+ frame->cur_e = ray_3f_nlerp(&frame->ne, &frame->se, frame->y_alpha);
+
+ ray->origin = camera->position;
+ ray->direction = frame->cur_w;
+}
© All Rights Reserved