#include #include #include #include "fb.h" #include "rototiller.h" /* Copyright (C) 2016 Vito Caputo */ /* Some defines for the fixed-point stuff in render(). */ #define FIXED_TRIG_LUT_SIZE 4096 /* size of the cos/sin look-up tables */ #define FIXED_BITS 11 /* fractional bits */ #define FIXED_EXP (1 << FIXED_BITS) /* 2^FIXED_BITS */ #define FIXED_MASK (FIXED_EXP - 1) /* fractional part mask */ #define FIXED_COS(_rad) costab[(_rad) % FIXED_TRIG_LUT_SIZE] #define FIXED_SIN(_rad) sintab[(_rad) % FIXED_TRIG_LUT_SIZE] #define FIXED_MULT(_a, _b) (((_a) * (_b)) >> FIXED_BITS) #define FIXED_NEW(_i) ((_i) << FIXED_BITS) #define FIXED_TO_INT(_f) ((_f) >> FIXED_BITS) typedef struct color_t { int r, g, b; } color_t; static int32_t costab[FIXED_TRIG_LUT_SIZE], sintab[FIXED_TRIG_LUT_SIZE]; static uint8_t texture[256][256]; static color_t palette[2]; static unsigned r, rr; /* linearly interpolate between two colors, alpha is fixed-point value 0-FIXED_EXP. */ static inline color_t lerp_color(color_t *a, color_t *b, int alpha) { /* TODO: This could be done without multiplies with a bit of effort, * maybe a simple table mapping integer color deltas to shift values * for shifting alpha which then gets simply added? A table may not even * be necessary, use the order of the delta to derive how much to shift * alpha? */ color_t c = { .r = a->r + FIXED_MULT(alpha, b->r - a->r), .g = a->g + FIXED_MULT(alpha, b->g - a->g), .b = a->b + FIXED_MULT(alpha, b->b - a->b), }; return c; } /* Return the bilinearly interpolated color palette[texture[ty][tx]] (Anti-Aliasing) */ /* tx, ty are fixed-point for fractions, palette colors are also in fixed-point format. */ static uint32_t bilerp_color(uint8_t texture[256][256], color_t *palette, int tx, int ty) { uint8_t itx = FIXED_TO_INT(tx), ity = FIXED_TO_INT(ty); color_t n_color, s_color, color; int x_alpha, y_alpha; uint8_t nw, ne, sw, se; /* We need the 4 texels constituting a 2x2 square pattern to interpolate. * A point tx,ty can only intersect one texel; one corner of the 2x2 square. * Where relative to the corner's center the intersection occurs determines which corner has been intersected, * and the other corner texels may then be addressed relative to that corner. * Alpha values must also be determined for both axis, these values describe the position between * the 2x2 texel centers the intersection occurred, aka the weight or bias. * Once the two alpha values are known, linear interpolation between the texel colors is trivial. */ if ((ty & FIXED_MASK) > (FIXED_EXP >> 1)) { y_alpha = ty & (FIXED_MASK >> 1); if ((tx & (FIXED_MASK)) > (FIXED_EXP >> 1)) { nw = texture[ity][itx]; ne = texture[ity][(uint8_t)(itx + 1)]; sw = texture[(uint8_t)(ity + 1)][itx]; se = texture[(uint8_t)(ity + 1)][(uint8_t)(itx + 1)]; x_alpha = tx & (FIXED_MASK >> 1); } else { ne = texture[ity][itx]; nw = texture[ity][(uint8_t)(itx - 1)]; se = texture[(uint8_t)(ity + 1)][itx]; sw = texture[(uint8_t)(ity + 1)][(uint8_t)(itx - 1)]; x_alpha = (FIXED_EXP >> 1) + (tx & (FIXED_MASK >> 1)); } } else { y_alpha = (FIXED_EXP >> 1) + (ty & (FIXED_MASK >> 1)); if ((tx & (FIXED_MASK)) > (FIXED_EXP >> 1)) { sw = texture[ity][itx]; se = texture[ity][(uint8_t)(itx + 1)]; nw = texture[(uint8_t)(ity - 1)][itx]; ne = texture[(uint8_t)(ity - 1)][(uint8_t)(itx + 1)]; x_alpha = tx & (FIXED_MASK >> 1); } else { se = texture[ity][itx]; sw = texture[ity][(uint8_t)(itx - 1)]; ne = texture[(uint8_t)(ity - 1)][itx]; nw = texture[(uint8_t)(ity - 1)][(uint8_t)(itx - 1)]; x_alpha = (FIXED_EXP >> 1) + (tx & (FIXED_MASK >> 1)); } } /* Skip interpolation of same colors, a substantial optimization with plain textures like the checker pattern */ if (nw == ne) { if (ne == sw && sw == se) { return (FIXED_TO_INT(palette[sw].r) << 16) | (FIXED_TO_INT(palette[sw].g) << 8) | FIXED_TO_INT(palette[sw].b); } n_color = palette[nw]; } else { n_color = lerp_color(&palette[nw], &palette[ne], x_alpha); } if (sw == se) { s_color = palette[sw]; } else { s_color = lerp_color(&palette[sw], &palette[se], x_alpha); } color = lerp_color(&n_color, &s_color, y_alpha); return (FIXED_TO_INT(color.r) << 16) | (FIXED_TO_INT(color.g) << 8) | FIXED_TO_INT(color.b); } static void init_roto(uint8_t texture[256][256], int32_t *costab, int32_t *sintab) { int x, y, i; /* Generate simple checker pattern texture, nothing clever, feel free to play! */ /* If you modify texture on every frame instead of only @ initialization you can * produce some neat output. These values are indexed into palette[] below. */ for (y = 0; y < 128; y++) { for (x = 0; x < 128; x++) texture[y][x] = 1; for (; x < 256; x++) texture[y][x] = 0; } for (; y < 256; y++) { for (x = 0; x < 128; x++) texture[y][x] = 0; for (; x < 256; x++) texture[y][x] = 1; } /* Generate fixed-point cos & sin LUTs. */ for (i = 0; i < FIXED_TRIG_LUT_SIZE; i++) { costab[i] = ((cos((double)2*M_PI*i/FIXED_TRIG_LUT_SIZE))*FIXED_EXP); sintab[i] = ((sin((double)2*M_PI*i/FIXED_TRIG_LUT_SIZE))*FIXED_EXP); } } /* prepare a frame for concurrent rendering */ static void roto_prepare_frame(void *context, unsigned n_cpus, fb_fragment_t *fragment, rototiller_frame_t *res_frame) { static int initialized; if (!initialized) { initialized = 1; init_roto(texture, costab, sintab); } res_frame->n_fragments = n_cpus; fb_fragment_divide(fragment, n_cpus, res_frame->fragments); // This governs the rotation and color cycle. r += FIXED_TO_INT(FIXED_MULT(FIXED_SIN(rr), FIXED_NEW(16))); rr += 2; } /* Draw a rotating checkered 256x256 texture into fragment. (32-bit version) */ static void roto32_render_fragment(void *context, fb_fragment_t *fragment) { int y_cos_r, y_sin_r, x_cos_r, x_sin_r, x_cos_r_init, x_sin_r_init, cos_r, sin_r; int x, y, stride = fragment->stride / 4, frame_width = fragment->frame_width, frame_height = fragment->frame_height; uint32_t *buf = fragment->buf; /* This is all done using fixed-point in the hopes of being faster, and yes assumptions * are being made WRT the overflow of tx/ty as well, only tested on x86_64. */ cos_r = FIXED_COS(r); sin_r = FIXED_SIN(r); /* Vary the colors, this is just a mashup of sinusoidal rgb values. */ palette[0].r = (FIXED_MULT(FIXED_COS(rr), FIXED_NEW(127)) + FIXED_NEW(128)); palette[0].g = (FIXED_MULT(FIXED_SIN(rr / 2), FIXED_NEW(127)) + FIXED_NEW(128)); palette[0].b = (FIXED_MULT(FIXED_COS(rr / 3), FIXED_NEW(127)) + FIXED_NEW(128)); palette[1].r = (FIXED_MULT(FIXED_SIN(rr / 2), FIXED_NEW(127)) + FIXED_NEW(128)); palette[1].g = (FIXED_MULT(FIXED_COS(rr / 2), FIXED_NEW(127)) + FIXED_NEW(128)); palette[1].b = (FIXED_MULT(FIXED_SIN(rr), FIXED_NEW(127)) + FIXED_NEW(128)); /* The dimensions are cut in half and negated to center the rotation. */ /* The [xy]_{sin,cos}_r variables are accumulators to replace multiplication with addition. */ x_cos_r_init = FIXED_MULT(-FIXED_NEW(frame_width / 2) + FIXED_NEW(fragment->x), cos_r); x_sin_r_init = FIXED_MULT(-FIXED_NEW(frame_width / 2) + FIXED_NEW(fragment->x), sin_r); y_cos_r = FIXED_MULT(-FIXED_NEW(frame_height / 2) + FIXED_NEW(fragment->y), cos_r); y_sin_r = FIXED_MULT(-FIXED_NEW(frame_height / 2) + FIXED_NEW(fragment->y), sin_r); for (y = fragment->y; y < fragment->y + fragment->height; y++) { x_cos_r = x_cos_r_init; x_sin_r = x_sin_r_init; for (x = fragment->x; x < fragment->x + fragment->width; x++, buf++) { *buf = bilerp_color(texture, palette, x_sin_r - y_cos_r, y_sin_r + x_cos_r); x_cos_r += cos_r; x_sin_r += sin_r; } buf += stride; y_cos_r += cos_r; y_sin_r += sin_r; } } /* Draw a rotating checkered 256x256 texture into fragment. (64-bit version) */ static void roto64_render_fragment(void *context, fb_fragment_t *fragment) { int y_cos_r, y_sin_r, x_cos_r, x_sin_r, x_cos_r_init, x_sin_r_init, cos_r, sin_r; int x, y, stride = fragment->stride / 8, frame_width = fragment->frame_width, frame_height = fragment->frame_height, width = fragment->width; uint64_t *buf = (uint64_t *)fragment->buf; /* This is all done using fixed-point in the hopes of being faster, and yes assumptions * are being made WRT the overflow of tx/ty as well, only tested on x86_64. */ cos_r = FIXED_COS(r); sin_r = FIXED_SIN(r); /* Vary the colors, this is just a mashup of sinusoidal rgb values. */ palette[0].r = (FIXED_MULT(FIXED_COS(rr), FIXED_NEW(127)) + FIXED_NEW(128)); palette[0].g = (FIXED_MULT(FIXED_SIN(rr / 2), FIXED_NEW(127)) + FIXED_NEW(128)); palette[0].b = (FIXED_MULT(FIXED_COS(rr / 3), FIXED_NEW(127)) + FIXED_NEW(128)); palette[1].r = (FIXED_MULT(FIXED_SIN(rr / 2), FIXED_NEW(127)) + FIXED_NEW(128)); palette[1].g = (FIXED_MULT(FIXED_COS(rr / 2), FIXED_NEW(127)) + FIXED_NEW(128)); palette[1].b = (FIXED_MULT(FIXED_SIN(rr), FIXED_NEW(127)) + FIXED_NEW(128)); /* The dimensions are cut in half and negated to center the rotation. */ /* The [xy]_{sin,cos}_r variables are accumulators to replace multiplication with addition. */ x_cos_r_init = FIXED_MULT(-FIXED_NEW(frame_width / 2) + FIXED_NEW(fragment->x), cos_r); x_sin_r_init = FIXED_MULT(-FIXED_NEW(frame_width / 2) + FIXED_NEW(fragment->x), sin_r); y_cos_r = FIXED_MULT(-FIXED_NEW(frame_height / 2) + FIXED_NEW(fragment->y), cos_r); y_sin_r = FIXED_MULT(-FIXED_NEW(frame_height / 2) + FIXED_NEW(fragment->y), sin_r); width /= 2; /* Since we're processing 64-bit words (2 pixels) at a time */ for (y = fragment->y; y < fragment->y + fragment->height; y++) { x_cos_r = x_cos_r_init; x_sin_r = x_sin_r_init; for (x = fragment->x; x < fragment->x + width; x++, buf++) { uint64_t p; p = bilerp_color(texture, palette, x_sin_r - y_cos_r, y_sin_r + x_cos_r); x_cos_r += cos_r; x_sin_r += sin_r; p |= (uint64_t)(bilerp_color(texture, palette, x_sin_r - y_cos_r, y_sin_r + x_cos_r)) << 32; *buf = p; x_cos_r += cos_r; x_sin_r += sin_r; } buf += stride; y_cos_r += cos_r; y_sin_r += sin_r; } } rototiller_module_t roto32_module = { .prepare_frame = roto_prepare_frame, .render_fragment = roto32_render_fragment, .name = "roto32", .description = "Anti-aliased tiled texture rotation (32-bit, threaded)", .author = "Vito Caputo ", .license = "GPLv2", }; rototiller_module_t roto64_module = { .prepare_frame = roto_prepare_frame, .render_fragment = roto64_render_fragment, .name = "roto64", .description = "Anti-aliased tiled texture rotation (64-bit, threaded)", .author = "Vito Caputo ", .license = "GPLv2", };