#ifndef _RAY_3F_H #define _RAY_3F_H #include typedef struct ray_3f_t { float x, y, z; } ray_3f_t; /* return the result of (a + b) */ static inline ray_3f_t ray_3f_add(const ray_3f_t *a, const ray_3f_t *b) { ray_3f_t res = { .x = a->x + b->x, .y = a->y + b->y, .z = a->z + b->z, }; return res; } /* return the result of (a - b) */ static inline ray_3f_t ray_3f_sub(const ray_3f_t *a, const ray_3f_t *b) { ray_3f_t res = { .x = a->x - b->x, .y = a->y - b->y, .z = a->z - b->z, }; return res; } /* return the result of (-v) */ static inline ray_3f_t ray_3f_negate(const ray_3f_t *v) { ray_3f_t res = { .x = -v->x, .y = -v->y, .z = -v->z, }; return res; } /* return the result of (a * b) */ static inline ray_3f_t ray_3f_mult(const ray_3f_t *a, const ray_3f_t *b) { ray_3f_t res = { .x = a->x * b->x, .y = a->y * b->y, .z = a->z * b->z, }; return res; } /* return the result of (v * scalar) */ static inline ray_3f_t ray_3f_mult_scalar(const ray_3f_t *v, float scalar) { ray_3f_t res = { .x = v->x * scalar, .y = v->y * scalar, .z = v->z * scalar, }; return res; } /* return the result of (uv / scalar) */ static inline ray_3f_t ray_3f_div_scalar(const ray_3f_t *v, float scalar) { ray_3f_t res = { .x = v->x / scalar, .y = v->y / scalar, .z = v->z / scalar, }; return res; } /* return the result of (a . b) */ static inline float ray_3f_dot(const ray_3f_t *a, const ray_3f_t *b) { return a->x * b->x + a->y * b->y + a->z * b->z; } /* return the length of the supplied vector */ static inline float ray_3f_length(const ray_3f_t *v) { return sqrtf(ray_3f_dot(v, v)); } /* return the normalized form of the supplied vector */ static inline ray_3f_t ray_3f_normalize(const ray_3f_t *v) { return ray_3f_mult_scalar(v, 1.0f / ray_3f_length(v)); } /* return the distance between two arbitrary points */ static inline float ray_3f_distance(const ray_3f_t *a, const ray_3f_t *b) { ray_3f_t delta = ray_3f_sub(a, b); return ray_3f_length(&delta); } /* return the cross product of two unit vectors */ static inline ray_3f_t ray_3f_cross(const ray_3f_t *a, const ray_3f_t *b) { ray_3f_t product; product.x = a->y * b->z - a->z * b->y; product.y = a->z * b->x - a->x * b->z; product.z = a->x * b->y - a->y * b->x; return product; } /* return the linearly interpolated vector between the two vectors at point alpha (0-1.0) */ static inline ray_3f_t ray_3f_lerp(const ray_3f_t *a, const ray_3f_t *b, float alpha) { ray_3f_t lerp_a, lerp_b; lerp_a = ray_3f_mult_scalar(a, 1.0f - alpha); lerp_b = ray_3f_mult_scalar(b, alpha); return ray_3f_add(&lerp_a, &lerp_b); } /* return the normalized linearly interpolated vector between the two vectors at point alpha (0-1.0) */ static inline ray_3f_t ray_3f_nlerp(const ray_3f_t *a, const ray_3f_t *b, float alpha) { ray_3f_t lerp; lerp = ray_3f_lerp(a, b, alpha); return ray_3f_normalize(&lerp); } #endif