/* * Copyright (C) 2020 - Vito Caputo - <vcaputo@pengaru.com> * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* This implements rudimentary 3D drawing of the convex regular polyhedra, AKA * Platonic solids, without resorting to conventional tessellated triangle * rasterization. * * Instead the five polyhedra are described by enumerating the vertices of their * faces, in a winding order, accompanied by their edge counts and unique vertex * counts. From these two counts, according to Euler's convex polyhedron rule, * we can trivially compute the number of faces, (E - V + 2) and from the number * of faces to draw derive the number of vertices to apply per face. * * No fancy texture mapping is performed, at this time only a wireframe is * rendered but flat shaded polygons would be fun and relatively easy to * implement. * * It would be interesting to procedurally generate the vertex lists, which * should be fairly trivial given the regularity and symmetry. * * TODO: * - hidden surface removal (solid) * - filled polygons * - shaded polygons * - combined/nested rendering of duals: * https://en.wikipedia.org/wiki/Convex_regular_polyhedron#Dual_polyhedra */ #include <errno.h> #include <stdlib.h> #include <unistd.h> #include <math.h> #include "til.h" #include "til_fb.h" #include "til_module_context.h" #include "til_stream.h" #include "til_tap.h" #define PLATO_DEFAULT_ORBIT_RATE .25 #define PLATO_DEFAULT_SPIN_RATE .75 typedef struct plato_setup_t { til_setup_t til_setup; float orbit_rate; float spin_rate; } plato_setup_t; typedef struct plato_context_t { til_module_context_t til_module_context; plato_setup_t setup; struct { til_tap_t orbit_rate; til_tap_t spin_rate; } taps; float *orbit_rate; float *spin_rate; float r, rr; } plato_context_t; typedef struct v3f_t { float x, y, z; } v3f_t; typedef struct polyhedron_t { const char *name; unsigned edge_cnt, vertex_cnt; unsigned n_vertices; /* size of vertices[] which enumerates all vertices in face order */ v3f_t vertices[]; } polyhedron_t; /* vertex coordinates from: * http://paulbourke.net/geometry/platonic/ * TODO: procedurally generate these all @ runtime */ static polyhedron_t tetrahedron = { .name = "tetrahedron", .edge_cnt = 6, .vertex_cnt = 4, .n_vertices = 12, .vertices = { { .5f, .5f, .5f}, {-.5f, .5f, -.5f}, { .5f, -.5f, -.5f}, {-.5f, .5f, -.5f}, {-.5f, -.5f, .5f}, { .5f, -.5f, -.5f}, { .5f, .5f, .5f}, { .5f, -.5f, -.5f}, {-.5f, -.5f, .5f}, { .5f, .5f, .5f}, {-.5f, -.5f, .5f}, {-.5f, .5f, -.5f}, } }; static polyhedron_t hexahedron = { .name = "hexahedron", .edge_cnt = 12, .vertex_cnt = 8, .n_vertices = 24, .vertices = { {-.5f, -.5f, -.5f}, { .5f, -.5f, -.5f}, { .5f, -.5f, .5f}, {-.5f, -.5f, .5f}, {-.5f, -.5f, -.5f}, {-.5f, -.5f, .5f}, {-.5f, .5f, .5f}, {-.5f, .5f, -.5f}, {-.5f, -.5f, .5f}, { .5f, -.5f, .5f}, { .5f, .5f, .5f}, {-.5f, .5f, .5f}, {-.5f, .5f, -.5f}, {-.5f, .5f, .5f}, { .5f, .5f, .5f}, { .5f, .5f, -.5f}, { .5f, -.5f, -.5f}, { .5f, .5f, -.5f}, { .5f, .5f, .5f}, { .5f, -.5f, .5f}, {-.5f, -.5f, -.5f}, {-.5f, .5f, -.5f}, { .5f, .5f, -.5f}, { .5f, -.5f, -.5f}, } }; #define A (1.f / (2.f * 1.4142f /*sqrt(2)*/)) #define B (1.f / 2.f) static polyhedron_t octahedron = { .name = "octahedron", .edge_cnt = 12, .vertex_cnt = 6, .n_vertices = 24, .vertices = { { -A, 0.f, A}, { -A, 0.f, -A}, {0.f, B, 0.f}, { -A, 0.f, -A}, { A, 0.f, -A}, {0.f, B, 0.f}, { A, 0.f, -A}, { A, 0.f, A}, {0.f, B, 0.f}, { A, 0.f, A}, { -A, 0.f, A}, {0.f, B, 0.f}, { A, 0.f, -A}, { -A, 0.f, -A}, {0.f, -B, 0.f}, { -A, 0.f, -A}, { -A, 0.f, A}, {0.f, -B, 0.f}, { A, 0.f, A}, { A, 0.f, -A}, {0.f, -B, 0.f}, { -A, 0.f, A}, { A, 0.f, A}, {0.f, -B, 0.f}, } }; #undef A #undef B #define PHI ((1.f + 2.236f /*sqrt(5)*/) / 2.f) #define B ((1.f / PHI) / 2.f) #define C ((2.f - PHI) / 2.f) static polyhedron_t dodecahedron = { .name = "dodecahedron", .edge_cnt = 30, .vertex_cnt = 20, .n_vertices = 60, .vertices = { { C, 0.f, .5f}, { -C, 0.f, .5f}, { -B, B, B}, { 0.f, .5f, C}, { B, B, B}, { -C, 0.f, .5f}, { C, 0.f, .5f}, { B, -B, B}, { 0.f, -.5f, C}, { -B, -B, B}, { C, 0.f, -.5f}, { -C, 0.f, -.5f}, { -B, -B, -B}, { 0.f, -.5f, -C}, { B, -B, -B}, { -C, 0.f, -.5f}, { C, 0.f, -.5f}, { B, B, -B}, { 0.f, .5f, -C}, { -B, B, -B}, { 0.f, .5f, -C}, { 0.f, .5f, C}, { B, B, B}, { .5f, C, 0.f}, { B, B, -B}, { 0.f, .5f, C}, { 0.f, .5f, -C}, { -B, B, -B}, {-.5f, C, 0.f}, { -B, B, B}, { 0.f, -.5f, -C}, { 0.f, -.5f, C}, { -B, -B, B}, {-.5f, -C, 0.f}, { -B, -B, -B}, { 0.f, -.5f, C}, { 0.f, -.5f, -C}, { B, -B, -B}, { .5f, -C, 0.f}, { B, -B, B}, { .5f, C, 0.f}, { .5f, -C, 0.f}, { B, -B, B}, { C, 0.f, .5f}, { B, B, B}, { .5f, -C, 0.f}, { .5f, C, 0.f}, { B, B, -B}, { C, 0.f, -.5f}, { B, -B, -B}, {-.5f, C, 0.f}, {-.5f, -C, 0.f}, { -B, -B, -B}, { -C, 0.f, -.5f}, { -B, B, -B}, {-.5f, -C, 0.f}, {-.5f, C, 0.f}, { -B, B, B}, { -C, 0.f, .5f}, { -B, -B, B}, } }; #undef PHI #undef B #undef C #define PHI ((1.f + 2.236f /*sqrt(5)*/) / 2.f) #define A (1.f /2.f) #define B (1.f / (2.f * PHI)) static polyhedron_t icosahedron = { .name = "icosahedron", .edge_cnt = 30, .vertex_cnt = 12, .n_vertices = 60, .vertices = { {0.f, B, -A}, { B, A, 0.f}, { -B, A, 0.f}, {0.f, B, A}, { -B, A, 0.f}, { B, A, 0.f}, {0.f, B, A}, {0.f, -B, A}, { -A, 0.f, B}, {0.f, B, A}, { A, 0.f, B}, {0.f, -B, A}, {0.f, B, -A}, {0.f, -B, -A}, { A, 0.f, -B}, {0.f, B, -A}, { -A, 0.f, -B}, {0.f, -B, -A}, {0.f, -B, A}, { B, -A, 0.f}, { -B, -A, 0.f}, {0.f, -B, -A}, { -B, -A, 0.f}, { B, -A, 0.f}, { -B, A, 0.f}, { -A, 0.f, B}, { -A, 0.f, -B}, { -B, -A, 0.f}, { -A, 0.f, -B}, { -A, 0.f, B}, { B, A, 0.f}, { A, 0.f, -B}, { A, 0.f, B}, { B, -A, 0.f}, { A, 0.f, B}, { A, 0.f, -B}, {0.f, B, A}, { -A, 0.f, B}, { -B, A, 0.f}, {0.f, B, A}, { B, A, 0.f}, { A, 0.f, B}, {0.f, B, -A}, { -B, A, 0.f}, { -A, 0.f, -B}, {0.f, B, -A}, { A, 0.f, -B}, { B, A, 0.f}, {0.f, -B, -A}, { -A, 0.f, -B}, { -B, -A, 0.f}, {0.f, -B, -A}, { B, -A, 0.f}, { A, 0.f, -B}, {0.f, -B, A}, { -B, -A, 0.f}, { -A, 0.f, B}, {0.f, -B, A}, { A, 0.f, B}, { B, -A, 0.f}, } }; #undef PHI #undef A #undef B static polyhedron_t *polyhedra[] = { &tetrahedron, &hexahedron, &octahedron, &dodecahedron, &icosahedron, }; /* 4x4 matrix type */ typedef struct m4f_t { float m[4][4]; } m4f_t; /* returns an identity matrix */ static inline m4f_t m4f_identity(void) { return (m4f_t){ .m = { { 1.f, 0.f, 0.f, 0.f }, { 0.f, 1.f, 0.f, 0.f }, { 0.f, 0.f, 1.f, 0.f }, { 0.f, 0.f, 0.f, 1.f }, }}; } /* 4x4 X 4x4 matrix multiply */ static inline m4f_t m4f_mult(const m4f_t *a, const m4f_t *b) { m4f_t r; r.m[0][0] = (a->m[0][0] * b->m[0][0]) + (a->m[1][0] * b->m[0][1]) + (a->m[2][0] * b->m[0][2]) + (a->m[3][0] * b->m[0][3]); r.m[0][1] = (a->m[0][1] * b->m[0][0]) + (a->m[1][1] * b->m[0][1]) + (a->m[2][1] * b->m[0][2]) + (a->m[3][1] * b->m[0][3]); r.m[0][2] = (a->m[0][2] * b->m[0][0]) + (a->m[1][2] * b->m[0][1]) + (a->m[2][2] * b->m[0][2]) + (a->m[3][2] * b->m[0][3]); r.m[0][3] = (a->m[0][3] * b->m[0][0]) + (a->m[1][3] * b->m[0][1]) + (a->m[2][3] * b->m[0][2]) + (a->m[3][3] * b->m[0][3]); r.m[1][0] = (a->m[0][0] * b->m[1][0]) + (a->m[1][0] * b->m[1][1]) + (a->m[2][0] * b->m[1][2]) + (a->m[3][0] * b->m[1][3]); r.m[1][1] = (a->m[0][1] * b->m[1][0]) + (a->m[1][1] * b->m[1][1]) + (a->m[2][1] * b->m[1][2]) + (a->m[3][1] * b->m[1][3]); r.m[1][2] = (a->m[0][2] * b->m[1][0]) + (a->m[1][2] * b->m[1][1]) + (a->m[2][2] * b->m[1][2]) + (a->m[3][2] * b->m[1][3]); r.m[1][3] = (a->m[0][3] * b->m[1][0]) + (a->m[1][3] * b->m[1][1]) + (a->m[2][3] * b->m[1][2]) + (a->m[3][3] * b->m[1][3]); r.m[2][0] = (a->m[0][0] * b->m[2][0]) + (a->m[1][0] * b->m[2][1]) + (a->m[2][0] * b->m[2][2]) + (a->m[3][0] * b->m[2][3]); r.m[2][1] = (a->m[0][1] * b->m[2][0]) + (a->m[1][1] * b->m[2][1]) + (a->m[2][1] * b->m[2][2]) + (a->m[3][1] * b->m[2][3]); r.m[2][2] = (a->m[0][2] * b->m[2][0]) + (a->m[1][2] * b->m[2][1]) + (a->m[2][2] * b->m[2][2]) + (a->m[3][2] * b->m[2][3]); r.m[2][3] = (a->m[0][3] * b->m[2][0]) + (a->m[1][3] * b->m[2][1]) + (a->m[2][3] * b->m[2][2]) + (a->m[3][3] * b->m[2][3]); r.m[3][0] = (a->m[0][0] * b->m[3][0]) + (a->m[1][0] * b->m[3][1]) + (a->m[2][0] * b->m[3][2]) + (a->m[3][0] * b->m[3][3]); r.m[3][1] = (a->m[0][1] * b->m[3][0]) + (a->m[1][1] * b->m[3][1]) + (a->m[2][1] * b->m[3][2]) + (a->m[3][1] * b->m[3][3]); r.m[3][2] = (a->m[0][2] * b->m[3][0]) + (a->m[1][2] * b->m[3][1]) + (a->m[2][2] * b->m[3][2]) + (a->m[3][2] * b->m[3][3]); r.m[3][3] = (a->m[0][3] * b->m[3][0]) + (a->m[1][3] * b->m[3][1]) + (a->m[2][3] * b->m[3][2]) + (a->m[3][3] * b->m[3][3]); return r; } /* 4x4 X 1x3 matrix multiply */ static inline v3f_t m4f_mult_v3f(const m4f_t *a, const v3f_t *b) { v3f_t v; v.x = (a->m[0][0] * b->x) + (a->m[1][0] * b->y) + (a->m[2][0] * b->z) + (a->m[3][0]); v.y = (a->m[0][1] * b->x) + (a->m[1][1] * b->y) + (a->m[2][1] * b->z) + (a->m[3][1]); v.z = (a->m[0][2] * b->x) + (a->m[1][2] * b->y) + (a->m[2][2] * b->z) + (a->m[3][2]); return v; } /* adjust the matrix m to translate by v, returning the resulting matrix */ /* if m is NULL the identity vector is assumed */ static inline m4f_t m4f_translate(const m4f_t *m, const v3f_t *v) { m4f_t identity = m4f_identity(); m4f_t translate = m4f_identity(); if (!m) m = &identity; translate.m[3][0] = v->x; translate.m[3][1] = v->y; translate.m[3][2] = v->z; return m4f_mult(m, &translate); } /* adjust the matrix m to scale by v, returning the resulting matrix */ /* if m is NULL the identity vector is assumed */ static inline m4f_t m4f_scale(const m4f_t *m, const v3f_t *v) { m4f_t identity = m4f_identity(); m4f_t scale = {}; if (!m) m = &identity; scale.m[0][0] = v->x; scale.m[1][1] = v->y; scale.m[2][2] = v->z; scale.m[3][3] = 1.f; return m4f_mult(m, &scale); } /* adjust the matrix m to rotate around the specified axis by radians, returning the resulting matrix */ /* axis is expected to be a unit vector */ /* if m is NULL the identity vector is assumed */ static inline m4f_t m4f_rotate(const m4f_t *m, const v3f_t *axis, float radians) { m4f_t identity = m4f_identity(); float cos_r = cosf(radians); float sin_r = sinf(radians); m4f_t rotate; if (!m) m = &identity; rotate.m[0][0] = cos_r + axis->x * axis->x * (1.f - cos_r); rotate.m[0][1] = axis->y * axis->x * (1.f - cos_r) + axis->z * sin_r; rotate.m[0][2] = axis->z * axis->x * (1.f - cos_r) - axis->y * sin_r; rotate.m[0][3] = 0.f; rotate.m[1][0] = axis->x * axis->y * (1.f - cos_r) - axis->z * sin_r; rotate.m[1][1] = cos_r + axis->y * axis->y * (1.f - cos_r); rotate.m[1][2] = axis->z * axis->y * (1.f - cos_r) + axis->x * sin_r; rotate.m[1][3] = 0.f; rotate.m[2][0] = axis->x * axis->z * (1.f - cos_r) + axis->y * sin_r; rotate.m[2][1] = axis->y * axis->z * (1.f - cos_r) - axis->x * sin_r; rotate.m[2][2] = cos_r + axis->z * axis->z * (1.f - cos_r); rotate.m[2][3] = 0.f; rotate.m[3][0] = 0.f; rotate.m[3][1] = 0.f; rotate.m[3][2] = 0.f; rotate.m[3][3] = 1.f; return m4f_mult(m, &rotate); } #if 0 /* these aren't currently used, but may come in handy later */ /* this is a simple perpsective projection matrix taken from an opengl tutorial */ static inline m4f_t m4f_frustum(float bot, float top, float left, float right, float nnear, float ffar) { m4f_t m = {}; m.m[0][0] = 2 * nnear / (right - left); m.m[1][1] = 2 * nnear / (top - bot); m.m[2][0] = (right + left) / (right - left);; m.m[2][1] = (top + bot) / (top - bot); m.m[2][2] = -(ffar + nnear) / (ffar - nnear); m.m[2][3] = -1; m.m[3][2] = -2 * ffar * nnear / (ffar - nnear); return m; } /* convert a color into a packed, 32-bit rgb pixel value (taken from libs/ray/ray_color.h) */ static inline uint32_t color_to_uint32(v3f_t color) { uint32_t pixel; if (color.x > 1.0f) color.x = 1.0f; if (color.y > 1.0f) color.y = 1.0f; if (color.z > 1.0f) color.z = 1.0f; if (color.x < .0f) color.x = .0f; if (color.y < .0f) color.y = .0f; if (color.z < .0f) color.z = .0f; pixel = (uint32_t)(color.x * 255.0f); pixel <<= 8; pixel |= (uint32_t)(color.y * 255.0f); pixel <<= 8; pixel |= (uint32_t)(color.z * 255.0f); return pixel; } #endif static void draw_line(til_fb_fragment_t *fragment, int x1, int y1, int x2, int y2) { int x_delta = x2 - x1; int y_delta = y2 - y1; int sdx = x_delta < 0 ? -1 : 1; int sdy = y_delta < 0 ? -1 : 1; x_delta = abs(x_delta); y_delta = abs(y_delta); if (x_delta >= y_delta) { /* X-major */ for (int minor = 0, x = 0; x <= x_delta; x++, x1 += sdx, minor += y_delta) { if (minor >= x_delta) { y1 += sdy; minor -= x_delta; } til_fb_fragment_put_pixel_checked(fragment, TIL_FB_DRAW_FLAG_TEXTURABLE, x1, y1, 0xffffffff); } } else { /* Y-major */ for (int minor = 0, y = 0; y <= y_delta; y++, y1 += sdy, minor += x_delta) { if (minor >= y_delta) { x1 += sdx; minor -= y_delta; } til_fb_fragment_put_pixel_checked(fragment, TIL_FB_DRAW_FLAG_TEXTURABLE, x1, y1, 0xffffffff); } } } #define ZCONST 3.f static void draw_polyhedron(const polyhedron_t *polyhedron, m4f_t *transform, til_fb_fragment_t *fragment) { unsigned n_faces = polyhedron->edge_cnt - polyhedron->vertex_cnt + 2; // https://en.wikipedia.org/wiki/Euler%27s_polyhedron_formula unsigned n_verts_per_face = polyhedron->n_vertices / n_faces; const v3f_t *v = polyhedron->vertices, *_v; for (unsigned f = 0; f < n_faces; f++) { _v = v + n_verts_per_face - 1; for (unsigned i = 0; i < n_verts_per_face; i++, v++) { int x1, y1, x2, y2; v3f_t xv, _xv; _xv = m4f_mult_v3f(transform, _v); xv = m4f_mult_v3f(transform, v); x1 = _xv.x / (_xv.z + ZCONST) * fragment->frame_width + fragment->frame_width * .5f; y1 = _xv.y / (_xv.z + ZCONST) * fragment->frame_height + fragment->frame_height * .5f; x2 = xv.x / (xv.z + ZCONST) * fragment->frame_width + fragment->frame_width * .5f; y2 = xv.y / (xv.z + ZCONST) * fragment->frame_height + fragment->frame_height * .5f; draw_line(fragment, x1, y1, x2, y2); _v = v; } } } static void plato_update_taps(plato_context_t *ctxt, til_stream_t *stream, unsigned ticks) { /* since we don't automate the rates ourselves, we don't care about the tap return values */ (void) til_stream_tap_context(stream, &ctxt->til_module_context, NULL, &ctxt->taps.orbit_rate); (void) til_stream_tap_context(stream, &ctxt->til_module_context, NULL, &ctxt->taps.spin_rate); } static til_module_context_t * plato_create_context(const til_module_t *module, til_stream_t *stream, unsigned seed, unsigned ticks, unsigned n_cpus, til_setup_t *setup) { plato_context_t *ctxt; ctxt = til_module_context_new(module, sizeof(plato_context_t), stream, seed, ticks, n_cpus, setup); if (!ctxt) return NULL; ctxt->setup = *((plato_setup_t *)setup); ctxt->taps.spin_rate = til_tap_init_float(ctxt, &ctxt->spin_rate, 1, &ctxt->setup.spin_rate, "spin_rate"); ctxt->taps.orbit_rate = til_tap_init_float(ctxt, &ctxt->orbit_rate, 1, &ctxt->setup.orbit_rate, "orbit_rate"); plato_update_taps(ctxt, stream, ticks); return &ctxt->til_module_context; } static void plato_render_fragment(til_module_context_t *context, til_stream_t *stream, unsigned ticks, unsigned cpu, til_fb_fragment_t **fragment_ptr) { plato_context_t *ctxt = (plato_context_t *)context; til_fb_fragment_t *fragment = *fragment_ptr; plato_update_taps(ctxt, stream, ticks); ctxt->r += (float)(ticks - context->last_ticks) * (*ctxt->orbit_rate * .001f); ctxt->rr += (float)(ticks - context->last_ticks) * (*ctxt->spin_rate * .001f); til_fb_fragment_clear(fragment); for (int i = 0; i < sizeof(polyhedra) / sizeof(*polyhedra); i++) { m4f_t transform; float p = (M_PI * 2.f) / 5.f, l; v3f_t ax; p *= (float)i; p -= ctxt->r; /* tweak the rotation axis */ ax.x = cosf(p); ax.y = sinf(p); ax.z = cosf(p) * sinf(p); /* normalize rotation vector, open-coded here */ l = 1.f/sqrtf(ax.x*ax.x+ax.y*ax.y+ax.z*ax.z); ax.x *= l; ax.y *= l; ax.z *= l; /* arrange the solids on a circle, at points of a pentagram */ transform = m4f_translate(NULL, &(v3f_t){cosf(p), sinf(p), 0.f}); transform = m4f_scale(&transform, &(v3f_t){.5f, .5f, .5f}); transform = m4f_rotate(&transform, &ax, ctxt->rr); draw_polyhedron(polyhedra[i], &transform, fragment); } } static int plato_setup(const til_settings_t *settings, til_setting_t **res_setting, const til_setting_desc_t **res_desc, til_setup_t **res_setup); til_module_t plato_module = { .create_context = plato_create_context, .render_fragment = plato_render_fragment, .setup = plato_setup, .name = "plato", .description = "Platonic solids rendered in 3D", .author = "Vito Caputo <vcaputo@pengaru.com>", .flags = TIL_MODULE_OVERLAYABLE, }; static int plato_setup(const til_settings_t *settings, til_setting_t **res_setting, const til_setting_desc_t **res_desc, til_setup_t **res_setup) { const char *orbit_rate; const char *spin_rate; const char *rate_values[] = { "-1", "-.75", "-.5", "-.25", ".1", "0", ".1", ".25", ".5", ".75", "1", NULL }; int r; r = til_settings_get_and_describe_value(settings, &(til_setting_spec_t){ .name = "Orbit rate and direction", .key = "orbit_rate", .regex = "\\.[0-9]+", /* FIXME */ .preferred = TIL_SETTINGS_STR(PLATO_DEFAULT_ORBIT_RATE), .values = rate_values, .annotations = NULL }, &orbit_rate, res_setting, res_desc); if (r) return r; r = til_settings_get_and_describe_value(settings, &(til_setting_spec_t){ .name = "Spin rate and direction", .key = "spin_rate", .regex = "\\.[0-9]+", /* FIXME */ .preferred = TIL_SETTINGS_STR(PLATO_DEFAULT_SPIN_RATE), .values = rate_values, .annotations = NULL }, &spin_rate, res_setting, res_desc); if (r) return r; if (res_setup) { plato_setup_t *setup; setup = til_setup_new(settings, sizeof(*setup), NULL, &plato_module); if (!setup) return -ENOMEM; sscanf(orbit_rate, "%f", &setup->orbit_rate); sscanf(spin_rate, "%f", &setup->spin_rate); *res_setup = &setup->til_setup; } return 0; }