#ifndef _RAY_CAMERA_H #define _RAY_CAMERA_H #include <math.h> #include "til_fb.h" #include "ray_3f.h" #include "ray_euler.h" #include "ray_ray.h" typedef struct ray_camera_t { ray_3f_t position; /* position of camera, the origin of all its rays */ ray_euler_t orientation; /* orientation of the camera */ /* Units for focal_length, width, and height, are undefined in absolute terms or any * kind of SI unit - they're the same units of the virtual scene shared * with the objects. */ float focal_length; /* controls the field of view */ /* XXX: Note these are not the same as the rendered frame width and height in pixels, * these influence the frustum size and shape in the 3D world by controlling the 2D * plane size and shape that frustum intersects. */ float film_width; /* width of camera's virtual "film" */ float film_height; /* height of camera's virtual "film" */ } ray_camera_t; typedef struct ray_camera_frame_t { const ray_camera_t *camera; /* the camera supplied to frame_begin() */ ray_3f_t nw, ne, sw, se; /* directions pointing through the corners of the frame fragment */ float x_delta, y_delta; /* interpolation step delta along the x and y axis */ } ray_camera_frame_t; typedef struct ray_camera_fragment_t { ray_camera_frame_t *frame; /* the frame supplied to fragment_begin() */ til_fb_fragment_t *fb_fragment; /* the fragment supplied to fragment_begin() */ ray_ray_t *ray; /* the ray supplied to frame_begin(), which gets updated as we step through the frame. */ ray_3f_t cur_w, cur_e; /* current row's west and east ends */ float x_alpha, y_alpha; /* interpolation position along the x and y axis */ unsigned x, y; /* integral position within frame fragment */ } ray_camera_fragment_t; void ray_camera_frame_prepare(const ray_camera_t *camera, unsigned frame_width, unsigned frame_height, ray_camera_frame_t *res_frame); void ray_camera_fragment_begin(ray_camera_frame_t *frame, til_fb_fragment_t *fb_fragment, ray_ray_t *res_ray, ray_camera_fragment_t *res_fragment); /* Step the ray through the fragment on the x axis, returns 1 when rays remain on this axis, 0 at the end. */ /* When 1 is returned, fragment->ray is left pointing through the new coordinate. */ static inline int ray_camera_fragment_x_step(ray_camera_fragment_t *fragment) { fragment->x++; if (fragment->x >= fragment->fb_fragment->width) { fragment->x = 0; fragment->x_alpha = fragment->frame->x_delta * (float)fragment->fb_fragment->x; return 0; } fragment->x_alpha += fragment->frame->x_delta; fragment->ray->direction = ray_3f_nlerp(&fragment->cur_w, &fragment->cur_e, fragment->x_alpha); return 1; } /* Step the ray through the fragment on the y axis, returns 1 when rays remain on this axis, 0 at the end. */ /* When 1 is returned, fragment->ray is left pointing through the new coordinate. */ static inline int ray_camera_fragment_y_step(ray_camera_fragment_t *fragment) { fragment->y++; if (fragment->y >= fragment->fb_fragment->height) { fragment->y = 0; fragment->y_alpha = fragment->frame->y_delta * (float)fragment->fb_fragment->y; return 0; } fragment->y_alpha += fragment->frame->y_delta; fragment->cur_w = ray_3f_lerp(&fragment->frame->nw, &fragment->frame->sw, fragment->y_alpha); fragment->cur_e = ray_3f_lerp(&fragment->frame->ne, &fragment->frame->se, fragment->y_alpha); fragment->ray->direction = ray_3f_nlerp(&fragment->cur_w, &fragment->cur_e, fragment->x_alpha); return 1; } #endif