#include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Copyright (C) 2016 Vito Caputo */ #define exit_if(_cond, _fmt, ...) \ if (_cond) { \ fprintf(stderr, "Fatal error: " _fmt "\n", ##__VA_ARGS__); \ exit(EXIT_FAILURE); \ } #define pexit_if(_cond, _fmt, ...) \ exit_if(_cond, _fmt ": %s", ##__VA_ARGS__, strerror(errno)) /* Some defines for the fixed-point stuff in render(). */ #define FIXED_TRIG_LUT_SIZE 4096 /* size of the cos/sin look-up tables */ #define FIXED_BITS 12 /* fractional bits */ #define FIXED_EXP 4096 /* 2^FIXED_BITS */ #define FIXED_COS(_rad) costab[_rad % FIXED_TRIG_LUT_SIZE] #define FIXED_SIN(_rad) sintab[_rad % FIXED_TRIG_LUT_SIZE] #define FIXED_MULT(_a, _b) ((_a * _b) >> FIXED_BITS) #define FIXED_NEW(_i) (_i << FIXED_BITS) #define FIXED_TO_INT(_f) ((_f) >> FIXED_BITS) /* Draw a rotating checkered 256x256 texture into next_page. */ static void render(uint32_t *current_page, uint32_t *next_page, int width, int height, int pitch) { static int32_t costab[FIXED_TRIG_LUT_SIZE], sintab[FIXED_TRIG_LUT_SIZE]; static uint8_t texture[256][256]; static int initialized; static uint32_t colors[2]; static unsigned r, rr; int y_cos_r, y_sin_r, x_cos_r, x_sin_r, x_cos_r_init, x_sin_r_init, cos_r, sin_r; int x, y, stride; uint8_t tx, ty; /* 256x256 texture; 8 bit texture indices to modulo via overflow. */ uint64_t *_next_page = (uint64_t *)next_page; if (!initialized) { int i; initialized = 1; /* Generate simple checker pattern texture, nothing clever, feel free to play! */ /* If you modify texture on every frame instead of only @ initialization you can * produce some neat output. These values are indexed into colors[] below. */ for (y = 0; y < 128; y++) { for (x = 0; x < 128; x++) texture[y][x] = 1; for (; x < 256; x++) texture[y][x] = 0; } for (; y < 256; y++) { for (x = 0; x < 128; x++) texture[y][x] = 0; for (; x < 256; x++) texture[y][x] = 1; } /* Generate fixed-point cos & sin LUTs. */ for (i = 0; i < FIXED_TRIG_LUT_SIZE; i++) { costab[i] = ((cos((double)2*M_PI*i/FIXED_TRIG_LUT_SIZE))*FIXED_EXP); sintab[i] = ((sin((double)2*M_PI*i/FIXED_TRIG_LUT_SIZE))*FIXED_EXP); } } pitch /= 4; /* pitch is number of bytes in a row, scale it to uint32_t units. */ stride = (pitch - width); /* stride is number of words from row end to start of next row */ /* This is all done using fixed-point in the hopes of being faster, and yes assumptions * are being made WRT the overflow of tx/ty as well, only tested on x86_64. */ cos_r = FIXED_COS(r); sin_r = FIXED_SIN(r); /* Vary the colors, this is just a mashup of sinusoidal rgb values. */ colors[0] = ((FIXED_TO_INT(FIXED_MULT(FIXED_COS(rr), FIXED_NEW(127))) + 128) << 16) | ((FIXED_TO_INT(FIXED_MULT(FIXED_SIN(rr / 2), FIXED_NEW(127))) + 128) << 8) | ((FIXED_TO_INT(FIXED_MULT(FIXED_COS(rr / 3), FIXED_NEW(127))) + 128)); colors[1] = ((FIXED_TO_INT(FIXED_MULT(FIXED_SIN(rr / 2), FIXED_NEW(127))) + 128) << 16) | ((FIXED_TO_INT(FIXED_MULT(FIXED_COS(rr / 2), FIXED_NEW(127))) + 128)) << 8 | ((FIXED_TO_INT(FIXED_MULT(FIXED_SIN(rr), FIXED_NEW(127))) + 128) ); /* The dimensions are cut in half and negated to center the rotation. */ /* The [xy]_{sin,cos}_r variables are accumulators to replace multiplication with addition. */ x_cos_r_init = FIXED_MULT(-FIXED_NEW((width / 2)), cos_r); x_sin_r_init = FIXED_MULT(-FIXED_NEW((width / 2)), sin_r); y_cos_r = FIXED_MULT(-FIXED_NEW((height / 2)), cos_r); y_sin_r = FIXED_MULT(-FIXED_NEW((height / 2)), sin_r); width /= 2; stride /= 2; for (y = 0; y < height; y++) { x_cos_r = x_cos_r_init; x_sin_r = x_sin_r_init; for (x = 0; x < width; x++, _next_page++) { uint64_t p; tx = FIXED_TO_INT(x_sin_r - y_cos_r); ty = FIXED_TO_INT(y_sin_r + x_cos_r); p = colors[texture[ty][tx]]; x_cos_r += cos_r; x_sin_r += sin_r; tx = FIXED_TO_INT(x_sin_r - y_cos_r); ty = FIXED_TO_INT(y_sin_r + x_cos_r); p |= (uint64_t)colors[texture[ty][tx]] << 32; *_next_page = p; x_cos_r += cos_r; x_sin_r += sin_r; } _next_page += stride; y_cos_r += cos_r; y_sin_r += sin_r; } // This governs the rotation and color cycle. r += FIXED_TO_INT(FIXED_MULT(FIXED_SIN(rr), FIXED_NEW(16))); rr += 2; } int main(int argc, const char *argv[]) { int drm_fd; drmModeResPtr drm_res; drmModeConnectorPtr drm_con; uint32_t *fb_maps[2], drm_fbs[2]; unsigned page = 0, next_page; pexit_if(!drmAvailable(), "drm unavailable"); /* FIXME: use drmOpen(), requires digging to see what you're supposed to supply it for name. */ pexit_if((drm_fd = open("/dev/dri/card0", O_RDWR)) < 0, "unable to open drm device"); /* this requires root, but doesn't seem necessary for what's being done here, which is a bit surprising. */ // pexit_if(drmSetMaster(drm_fd) < 0, // "unable to set master"); exit_if(!(drm_res = drmModeGetResources(drm_fd)), "unable to get drm resources"); exit_if(drm_res->count_connectors < 1 || !(drm_con = drmModeGetConnector(drm_fd, drm_res->connectors[0])), "unable to get first connector"); /* create double-buffers */ struct drm_mode_create_dumb create_dumb = { .width = drm_con->modes[0].hdisplay, .height = drm_con->modes[0].vdisplay, .bpp = 32, .flags = 0, // unused, }; pexit_if(ioctl(drm_fd, DRM_IOCTL_MODE_CREATE_DUMB, &create_dumb) < 0, "unable to create dumb buffer A"); struct drm_mode_map_dumb map_dumb = { .handle = create_dumb.handle, .pad = 0, // unused }; pexit_if(ioctl(drm_fd, DRM_IOCTL_MODE_MAP_DUMB, &map_dumb) < 0, "unable to prepare dumb buffer A for mmap"); pexit_if(!(fb_maps[0] = mmap(NULL, create_dumb.size, PROT_READ|PROT_WRITE, MAP_SHARED, drm_fd, map_dumb.offset)), "unable to mmap dumb buffer A"); pexit_if(drmModeAddFB(drm_fd, create_dumb.width, create_dumb.height, 24, create_dumb.bpp, create_dumb.pitch, create_dumb.handle, &drm_fbs[0]) < 0, "unable to add dumb buffer A as fb"); /* second one... */ pexit_if(ioctl(drm_fd, DRM_IOCTL_MODE_CREATE_DUMB, &create_dumb) < 0, "unable to create dumb buffer B"); pexit_if(drmModeAddFB(drm_fd, create_dumb.width, create_dumb.height, 24, create_dumb.bpp, create_dumb.pitch, create_dumb.handle, &drm_fbs[1]) < 0, "unable to add dumb buffer B as fb"); map_dumb.handle = create_dumb.handle; pexit_if(ioctl(drm_fd, DRM_IOCTL_MODE_MAP_DUMB, &map_dumb) < 0, "unable to prepare dumb buffer B for mmap"); pexit_if(!(fb_maps[1] = mmap(NULL, create_dumb.size, PROT_READ|PROT_WRITE, MAP_SHARED, drm_fd, map_dumb.offset)), "unable to mmap dumb buffer B"); /* make the current page the visible one */ pexit_if(drmModeSetCrtc(drm_fd, drm_res->crtcs[0], drm_fbs[page], 0, 0, drm_res->connectors, 1, drm_con->modes) < 0, "unable to configure crtc"); drmEventContext drm_ev_ctx = { .version = DRM_EVENT_CONTEXT_VERSION, .vblank_handler = NULL, .page_flip_handler = NULL }; // now the rendering & page-flipping loop */ for (;;page = next_page) { next_page = (page + 1) % 2; /* render next page */ render(fb_maps[page], fb_maps[next_page], create_dumb.width, create_dumb.height, create_dumb.pitch); /* flip synchronously */ pexit_if(drmModePageFlip(drm_fd, drm_res->crtcs[0], drm_fbs[next_page], DRM_MODE_PAGE_FLIP_EVENT, NULL) < 0, "unable to flip page %u to %u", page, next_page); drmHandleEvent(drm_fd, &drm_ev_ctx); } return EXIT_SUCCESS; }