From b02bf111ab873aad70c169e2159ee96c8aea690b Mon Sep 17 00:00:00 2001 From: Vito Caputo Date: Thu, 17 Sep 2020 01:08:57 -0700 Subject: plato: regular convex polyhedrons in 3D plato implements very simple software-rendered 3D models of the five convex regular polyhedra / Platonic solids Some TODO items: - procedurally generate vertices at runtime - add hidden surface removal setting (Z-buffer?) - add flat shaded rendering setting - add gouraud shading, maybe phong too? - show dual polyhedra This was more about slapping together a minimal 3D wireframe software renderer than anything to do with polyhedra, convex regular polyhedra just seemed like an excellent substrate since they're so simple to model. --- src/modules/plato/Makefile.am | 3 + src/modules/plato/plato.c | 678 ++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 681 insertions(+) create mode 100644 src/modules/plato/Makefile.am create mode 100644 src/modules/plato/plato.c (limited to 'src/modules/plato') diff --git a/src/modules/plato/Makefile.am b/src/modules/plato/Makefile.am new file mode 100644 index 0000000..d0b9069 --- /dev/null +++ b/src/modules/plato/Makefile.am @@ -0,0 +1,3 @@ +noinst_LIBRARIES = libplato.a +libplato_a_SOURCES = plato.c +libplato_a_CPPFLAGS = -I@top_srcdir@/src -I@top_srcdir@/src/libs diff --git a/src/modules/plato/plato.c b/src/modules/plato/plato.c new file mode 100644 index 0000000..8f0810e --- /dev/null +++ b/src/modules/plato/plato.c @@ -0,0 +1,678 @@ +/* + * Copyright (C) 2020 - Vito Caputo - + * + * This program is free software: you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 3 as published + * by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see . + */ + +/* This implements rudimentary 3D drawing of the convex regular polyhedra, AKA + * Platonic solids, without resorting to conventional tessellated triangle + * rasterization. + * + * Instead the five polyhedra are described by enumerating the vertices of their + * faces, in a winding order, accompanied by their edge counts and unique vertex + * counts. From these two counts, according to Euler's convex polyhedron rule, + * we can trivially compute the number of faces, (E - V + 2) and from the number + * of faces to draw derive the number of vertices to apply per face. + * + * No fancy texture mapping is performed, at this time only a wireframe is + * rendered but flat shaded polygons would be fun and relatively easy to + * implement. + * + * It would be interesting to procedurally generate the vertex lists, which + * should be fairly trivial given the regularity and symmetry. + * + * TODO: + * - hidden surface removal (solid) + * - filled polygons + * - shaded polygons + * - combined/nested rendering of duals: + * https://en.wikipedia.org/wiki/Convex_regular_polyhedron#Dual_polyhedra + */ + +#include +#include +#include +#include + +#include "fb.h" +#include "rototiller.h" + + +typedef struct plato_context_t { + unsigned n_cpus; + float r; +} plato_context_t; + +typedef struct v3f_t { + float x, y, z; +} v3f_t; + +typedef struct polyhedron_t { + const char *name; + unsigned edge_cnt, vertex_cnt; + unsigned n_vertices; /* size of vertices[] which enumerates all vertices in face order */ + v3f_t vertices[]; +} polyhedron_t; + + +/* vertex coordinates from: + * http://paulbourke.net/geometry/platonic/ + * TODO: procedurally generate these all @ runtime + */ + +static polyhedron_t tetrahedron = { + .name = "tetrahedron", + .edge_cnt = 6, + .vertex_cnt = 4, + + .n_vertices = 12, + .vertices = { + { .5f, .5f, .5f}, + {-.5f, .5f, -.5f}, + { .5f, -.5f, -.5f}, + + {-.5f, .5f, -.5f}, + {-.5f, -.5f, .5f}, + { .5f, -.5f, -.5f}, + + { .5f, .5f, .5f}, + { .5f, -.5f, -.5f}, + {-.5f, -.5f, .5f}, + + { .5f, .5f, .5f}, + {-.5f, -.5f, .5f}, + {-.5f, .5f, -.5f}, + } +}; + +static polyhedron_t hexahedron = { + .name = "hexahedron", + .edge_cnt = 12, + .vertex_cnt = 8, + + .n_vertices = 24, + .vertices = { + {-.5f, -.5f, -.5f}, + { .5f, -.5f, -.5f}, + { .5f, -.5f, .5f}, + {-.5f, -.5f, .5f}, + + {-.5f, -.5f, -.5f}, + {-.5f, -.5f, .5f}, + {-.5f, .5f, .5f}, + {-.5f, .5f, -.5f}, + + {-.5f, -.5f, .5f}, + { .5f, -.5f, .5f}, + { .5f, .5f, .5f}, + {-.5f, .5f, .5f}, + + {-.5f, .5f, -.5f}, + {-.5f, .5f, .5f}, + { .5f, .5f, .5f}, + { .5f, .5f, -.5f}, + + { .5f, -.5f, -.5f}, + { .5f, .5f, -.5f}, + { .5f, .5f, .5f}, + { .5f, -.5f, .5f}, + + {-.5f, -.5f, -.5f}, + {-.5f, .5f, -.5f}, + { .5f, .5f, -.5f}, + { .5f, -.5f, -.5f}, + } +}; + +#define A (1.f / (2.f * 1.4142f /*sqrt(2)*/)) +#define B (1.f / 2.f) +static polyhedron_t octahedron = { + .name = "octahedron", + .edge_cnt = 12, + .vertex_cnt = 6, + + .n_vertices = 24, + .vertices = { + { -A, 0.f, A}, + { -A, 0.f, -A}, + {0.f, B, 0.f}, + + { -A, 0.f, -A}, + { A, 0.f, -A}, + {0.f, B, 0.f}, + + { A, 0.f, -A}, + { A, 0.f, A}, + {0.f, B, 0.f}, + + { A, 0.f, A}, + { -A, 0.f, A}, + {0.f, B, 0.f}, + + { A, 0.f, -A}, + { -A, 0.f, -A}, + {0.f, -B, 0.f}, + + { -A, 0.f, -A}, + { -A, 0.f, A}, + {0.f, -B, 0.f}, + + { A, 0.f, A}, + { A, 0.f, -A}, + {0.f, -B, 0.f}, + + { -A, 0.f, A}, + { A, 0.f, A}, + {0.f, -B, 0.f}, + } +}; +#undef A +#undef B + +#define PHI ((1.f + 2.236f /*sqrt(5)*/) / 2.f) +#define B ((1.f / PHI) / 2.f) +#define C ((2.f - PHI) / 2.f) +static polyhedron_t dodecahedron = { + .name = "dodecahedron", + .edge_cnt = 30, + .vertex_cnt = 20, + + .n_vertices = 60, + .vertices = { + { C, 0.f, .5f}, + { -C, 0.f, .5f}, + { -B, B, B}, + { 0.f, .5f, C}, + { B, B, B}, + + { -C, 0.f, .5f}, + { C, 0.f, .5f}, + { B, -B, B}, + { 0.f, -.5f, C}, + { -B, -B, B}, + + { C, 0.f, -.5f}, + { -C, 0.f, -.5f}, + { -B, -B, -B}, + { 0.f, -.5f, -C}, + { B, -B, -B}, + + { -C, 0.f, -.5f}, + { C, 0.f, -.5f}, + { B, B, -B}, + { 0.f, .5f, -C}, + { -B, B, -B}, + + { 0.f, .5f, -C}, + { 0.f, .5f, C}, + { B, B, B}, + { .5f, C, 0.f}, + { B, B, -B}, + + { 0.f, .5f, C}, + { 0.f, .5f, -C}, + { -B, B, -B}, + {-.5f, C, 0.f}, + { -B, B, B}, + + { 0.f, -.5f, -C}, + { 0.f, -.5f, C}, + { -B, -B, B}, + {-.5f, -C, 0.f}, + { -B, -B, -B}, + + { 0.f, -.5f, C}, + { 0.f, -.5f, -C}, + { B, -B, -B}, + { .5f, -C, 0.f}, + { B, -B, B}, + + { .5f, C, 0.f}, + { .5f, -C, 0.f}, + { B, -B, B}, + { C, 0.f, .5f}, + { B, B, B}, + + { .5f, -C, 0.f}, + { .5f, C, 0.f}, + { B, B, -B}, + { C, 0.f, -.5f}, + { B, -B, -B}, + + {-.5f, C, 0.f}, + {-.5f, -C, 0.f}, + { -B, -B, -B}, + { -C, 0.f, -.5f}, + { -B, B, -B}, + + {-.5f, -C, 0.f}, + {-.5f, C, 0.f}, + { -B, B, B}, + { -C, 0.f, .5f}, + { -B, -B, B}, + } +}; +#undef PHI +#undef B +#undef C + +#define PHI ((1.f + 2.236f /*sqrt(5)*/) / 2.f) +#define A (1.f /2.f) +#define B (1.f / (2.f * PHI)) +static polyhedron_t icosahedron = { + .name = "icosahedron", + .edge_cnt = 30, + .vertex_cnt = 12, + + .n_vertices = 60, + .vertices = { + {0.f, B, -A}, + { B, A, 0.f}, + { -B, A, 0.f}, + + {0.f, B, A}, + { -B, A, 0.f}, + { B, A, 0.f}, + + {0.f, B, A}, + {0.f, -B, A}, + { -A, 0.f, B}, + + {0.f, B, A}, + { A, 0.f, B}, + {0.f, -B, A}, + + {0.f, B, -A}, + {0.f, -B, -A}, + { A, 0.f, -B}, + + {0.f, B, -A}, + { -A, 0.f, -B}, + {0.f, -B, -A}, + + {0.f, -B, A}, + { B, -A, 0.f}, + { -B, -A, 0.f}, + + {0.f, -B, -A}, + { -B, -A, 0.f}, + { B, -A, 0.f}, + + { -B, A, 0.f}, + { -A, 0.f, B}, + { -A, 0.f, -B}, + + { -B, -A, 0.f}, + { -A, 0.f, -B}, + { -A, 0.f, B}, + + { B, A, 0.f}, + { A, 0.f, -B}, + { A, 0.f, B}, + + { B, -A, 0.f}, + { A, 0.f, B}, + { A, 0.f, -B}, + + {0.f, B, A}, + { -A, 0.f, B}, + { -B, A, 0.f}, + + {0.f, B, A}, + { B, A, 0.f}, + { A, 0.f, B}, + + {0.f, B, -A}, + { -B, A, 0.f}, + { -A, 0.f, -B}, + + {0.f, B, -A}, + { A, 0.f, -B}, + { B, A, 0.f}, + + {0.f, -B, -A}, + { -A, 0.f, -B}, + { -B, -A, 0.f}, + + {0.f, -B, -A}, + { B, -A, 0.f}, + { A, 0.f, -B}, + + {0.f, -B, A}, + { -B, -A, 0.f}, + { -A, 0.f, B}, + + {0.f, -B, A}, + { A, 0.f, B}, + { B, -A, 0.f}, + } +}; +#undef PHI +#undef A +#undef B + +static polyhedron_t *polyhedra[] = { + &tetrahedron, + &hexahedron, + &octahedron, + &dodecahedron, + &icosahedron, +}; + + +/* 4x4 matrix type */ +typedef struct m4f_t { + float m[4][4]; +} m4f_t; + + +/* returns an identity matrix */ +static inline m4f_t m4f_identity(void) +{ + return (m4f_t){ .m = { + { 1.f, 0.f, 0.f, 0.f }, + { 0.f, 1.f, 0.f, 0.f }, + { 0.f, 0.f, 1.f, 0.f }, + { 0.f, 0.f, 0.f, 1.f }, + }}; +} + + +/* 4x4 X 4x4 matrix multiply */ +static inline m4f_t m4f_mult(const m4f_t *a, const m4f_t *b) +{ + m4f_t r; + + r.m[0][0] = (a->m[0][0] * b->m[0][0]) + (a->m[1][0] * b->m[0][1]) + (a->m[2][0] * b->m[0][2]) + (a->m[3][0] * b->m[0][3]); + r.m[0][1] = (a->m[0][1] * b->m[0][0]) + (a->m[1][1] * b->m[0][1]) + (a->m[2][1] * b->m[0][2]) + (a->m[3][1] * b->m[0][3]); + r.m[0][2] = (a->m[0][2] * b->m[0][0]) + (a->m[1][2] * b->m[0][1]) + (a->m[2][2] * b->m[0][2]) + (a->m[3][2] * b->m[0][3]); + r.m[0][3] = (a->m[0][3] * b->m[0][0]) + (a->m[1][3] * b->m[0][1]) + (a->m[2][3] * b->m[0][2]) + (a->m[3][3] * b->m[0][3]); + + r.m[1][0] = (a->m[0][0] * b->m[1][0]) + (a->m[1][0] * b->m[1][1]) + (a->m[2][0] * b->m[1][2]) + (a->m[3][0] * b->m[1][3]); + r.m[1][1] = (a->m[0][1] * b->m[1][0]) + (a->m[1][1] * b->m[1][1]) + (a->m[2][1] * b->m[1][2]) + (a->m[3][1] * b->m[1][3]); + r.m[1][2] = (a->m[0][2] * b->m[1][0]) + (a->m[1][2] * b->m[1][1]) + (a->m[2][2] * b->m[1][2]) + (a->m[3][2] * b->m[1][3]); + r.m[1][3] = (a->m[0][3] * b->m[1][0]) + (a->m[1][3] * b->m[1][1]) + (a->m[2][3] * b->m[1][2]) + (a->m[3][3] * b->m[1][3]); + + r.m[2][0] = (a->m[0][0] * b->m[2][0]) + (a->m[1][0] * b->m[2][1]) + (a->m[2][0] * b->m[2][2]) + (a->m[3][0] * b->m[2][3]); + r.m[2][1] = (a->m[0][1] * b->m[2][0]) + (a->m[1][1] * b->m[2][1]) + (a->m[2][1] * b->m[2][2]) + (a->m[3][1] * b->m[2][3]); + r.m[2][2] = (a->m[0][2] * b->m[2][0]) + (a->m[1][2] * b->m[2][1]) + (a->m[2][2] * b->m[2][2]) + (a->m[3][2] * b->m[2][3]); + r.m[2][3] = (a->m[0][3] * b->m[2][0]) + (a->m[1][3] * b->m[2][1]) + (a->m[2][3] * b->m[2][2]) + (a->m[3][3] * b->m[2][3]); + + r.m[3][0] = (a->m[0][0] * b->m[3][0]) + (a->m[1][0] * b->m[3][1]) + (a->m[2][0] * b->m[3][2]) + (a->m[3][0] * b->m[3][3]); + r.m[3][1] = (a->m[0][1] * b->m[3][0]) + (a->m[1][1] * b->m[3][1]) + (a->m[2][1] * b->m[3][2]) + (a->m[3][1] * b->m[3][3]); + r.m[3][2] = (a->m[0][2] * b->m[3][0]) + (a->m[1][2] * b->m[3][1]) + (a->m[2][2] * b->m[3][2]) + (a->m[3][2] * b->m[3][3]); + r.m[3][3] = (a->m[0][3] * b->m[3][0]) + (a->m[1][3] * b->m[3][1]) + (a->m[2][3] * b->m[3][2]) + (a->m[3][3] * b->m[3][3]); + + return r; +} + + +/* 4x4 X 1x3 matrix multiply */ +static inline v3f_t m4f_mult_v3f(const m4f_t *a, const v3f_t *b) +{ + v3f_t v; + + v.x = (a->m[0][0] * b->x) + (a->m[1][0] * b->y) + (a->m[2][0] * b->z) + (a->m[3][0]); + v.y = (a->m[0][1] * b->x) + (a->m[1][1] * b->y) + (a->m[2][1] * b->z) + (a->m[3][1]); + v.z = (a->m[0][2] * b->x) + (a->m[1][2] * b->y) + (a->m[2][2] * b->z) + (a->m[3][2]); + + return v; +} + + +/* adjust the matrix m to translate by v, returning the resulting matrix */ +/* if m is NULL the identity vector is assumed */ +static inline m4f_t m4f_translate(const m4f_t *m, const v3f_t *v) +{ + m4f_t identity = m4f_identity(); + m4f_t translate = m4f_identity(); + + if (!m) + m = &identity; + + translate.m[3][0] = v->x; + translate.m[3][1] = v->y; + translate.m[3][2] = v->z; + + return m4f_mult(m, &translate); +} + + +/* adjust the matrix m to scale by v, returning the resulting matrix */ +/* if m is NULL the identity vector is assumed */ +static inline m4f_t m4f_scale(const m4f_t *m, const v3f_t *v) +{ + m4f_t identity = m4f_identity(); + m4f_t scale = {}; + + if (!m) + m = &identity; + + scale.m[0][0] = v->x; + scale.m[1][1] = v->y; + scale.m[2][2] = v->z; + scale.m[3][3] = 1.f; + + return m4f_mult(m, &scale); +} + + +/* adjust the matrix m to rotate around the specified axis by radians, returning the resulting matrix */ +/* axis is expected to be a unit vector */ +/* if m is NULL the identity vector is assumed */ +static inline m4f_t m4f_rotate(const m4f_t *m, const v3f_t *axis, float radians) +{ + m4f_t identity = m4f_identity(); + float cos_r = cosf(radians); + float sin_r = sinf(radians); + m4f_t rotate; + + if (!m) + m = &identity; + + rotate.m[0][0] = cos_r + axis->x * axis->x * (1.f - cos_r); + rotate.m[0][1] = axis->y * axis->x * (1.f - cos_r) + axis->z * sin_r; + rotate.m[0][2] = axis->z * axis->x * (1.f - cos_r) - axis->y * sin_r; + rotate.m[0][3] = 0.f; + + rotate.m[1][0] = axis->x * axis->y * (1.f - cos_r) - axis->z * sin_r; + rotate.m[1][1] = cos_r + axis->y * axis->y * (1.f - cos_r); + rotate.m[1][2] = axis->z * axis->y * (1.f - cos_r) + axis->x * sin_r; + rotate.m[1][3] = 0.f; + + rotate.m[2][0] = axis->x * axis->z * (1.f - cos_r) + axis->y * sin_r; + rotate.m[2][1] = axis->y * axis->z * (1.f - cos_r) - axis->x * sin_r; + rotate.m[2][2] = cos_r + axis->z * axis->z * (1.f - cos_r); + rotate.m[2][3] = 0.f; + + rotate.m[3][0] = 0.f; + rotate.m[3][1] = 0.f; + rotate.m[3][2] = 0.f; + rotate.m[3][3] = 1.f; + + return m4f_mult(m, &rotate); +} + + +/* this is a simple perpsective projection matrix taken from an opengl tutorial */ +static inline m4f_t m4f_frustum(float bot, float top, float left, float right, float nnear, float ffar) +{ + m4f_t m = {}; + + m.m[0][0] = 2 * nnear / (right - left); + + m.m[1][1] = 2 * nnear / (top - bot); + + m.m[2][0] = (right + left) / (right - left);; + m.m[2][1] = (top + bot) / (top - bot); + m.m[2][2] = -(ffar + nnear) / (ffar - nnear); + m.m[2][3] = -1; + + m.m[3][2] = -2 * ffar * nnear / (ffar - nnear); + + return m; +} + + +/* convert a color into a packed, 32-bit rgb pixel value (taken from libs/ray/ray_color.h) */ +static inline uint32_t color_to_uint32(v3f_t color) { + uint32_t pixel; + + if (color.x > 1.0f) color.x = 1.0f; + if (color.y > 1.0f) color.y = 1.0f; + if (color.z > 1.0f) color.z = 1.0f; + + if (color.x < .0f) color.x = .0f; + if (color.y < .0f) color.y = .0f; + if (color.z < .0f) color.z = .0f; + + pixel = (uint32_t)(color.x * 255.0f); + pixel <<= 8; + pixel |= (uint32_t)(color.y * 255.0f); + pixel <<= 8; + pixel |= (uint32_t)(color.z * 255.0f); + + return pixel; +} + + +static void draw_line(fb_fragment_t *fragment, int x1, int y1, int x2, int y2) +{ + int x_delta = x2 - x1; + int y_delta = y2 - y1; + int sdx = x_delta < 0 ? -1 : 1; + int sdy = y_delta < 0 ? -1 : 1; + + x_delta = abs(x_delta); + y_delta = abs(y_delta); + + if (x_delta >= y_delta) { + /* X-major */ + for (int minor = 0, x = 0; x <= x_delta; x++, x1 += sdx, minor += y_delta) { + if (minor >= x_delta) { + y1 += sdy; + minor -= x_delta; + } + + fb_fragment_put_pixel_checked(fragment, x1, y1, 0xffffffff); + } + } else { + /* Y-major */ + for (int minor = 0, y = 0; y <= y_delta; y++, y1 += sdy, minor += x_delta) { + if (minor >= y_delta) { + x1 += sdx; + minor -= y_delta; + } + + fb_fragment_put_pixel_checked(fragment, x1, y1, 0xffffffff); + } + } +} + +#define ZCONST 3.f + +static void draw_polyhedron(const polyhedron_t *polyhedron, m4f_t *transform, fb_fragment_t *fragment) +{ + unsigned n_faces = polyhedron->edge_cnt - polyhedron->vertex_cnt + 2; // https://en.wikipedia.org/wiki/Euler%27s_polyhedron_formula + unsigned n_verts_per_face = polyhedron->n_vertices / n_faces; + const v3f_t *v = polyhedron->vertices, *_v; + + for (unsigned f = 0; f < n_faces; f++) { + _v = v + n_verts_per_face - 1; + for (unsigned i = 0; i < n_verts_per_face; i++, v++) { + int x1, y1, x2, y2; + v3f_t xv, _xv; + + _xv = m4f_mult_v3f(transform, _v); + xv = m4f_mult_v3f(transform, v); + + x1 = _xv.x / (_xv.z + ZCONST) * fragment->width + fragment->width * .5f; + y1 = _xv.y / (_xv.z + ZCONST) * fragment->height + fragment->height * .5f; + + x2 = xv.x / (xv.z + ZCONST) * fragment->width + fragment->width * .5f; + y2 = xv.y / (xv.z + ZCONST) * fragment->height + fragment->height * .5f; + + draw_line(fragment, x1, y1, x2, y2); + _v = v; + } + } +} + + +static void * plato_create_context(unsigned ticks, unsigned num_cpus) +{ + plato_context_t *ctxt; + + ctxt = calloc(1, sizeof(plato_context_t)); + if (!ctxt) + return NULL; + + ctxt->n_cpus = num_cpus; + + return ctxt; +} + + +static void plato_destroy_context(void *context) +{ + plato_context_t *ctxt = context; + + free(ctxt); +} + + +static void plato_render_fragment(void *context, unsigned ticks, unsigned cpu, fb_fragment_t *fragment) +{ + plato_context_t *ctxt = context; + + ctxt->r += .015f; + fb_fragment_zero(fragment); + + for (int i = 0; i < sizeof(polyhedra) / sizeof(*polyhedra); i++) { + m4f_t transform; + float p = (M_PI * 2.f) / 5.f, l; + v3f_t ax; + + p *= (float)i; + p -= ctxt->r; + + /* tweak the rotation axis */ + ax.x = cosf(p); + ax.y = sinf(p); + ax.z = cosf(p) * sinf(p); + + /* normalize rotation vector, open-coded here */ + l = 1.f/sqrtf(ax.x*ax.x+ax.y*ax.y+ax.z*ax.z); + ax.x *= l; + ax.y *= l; + ax.z *= l; + + /* arrange the solids on a circle, at points of a pentagram */ + transform = m4f_translate(NULL, &(v3f_t){cosf(p), sinf(p), 0.f}); + transform = m4f_scale(&transform, &(v3f_t){.5f, .5f, .5f}); + transform = m4f_rotate(&transform, &ax, ctxt->r); + + draw_polyhedron(polyhedra[i], &transform, fragment); + } +} + + +rototiller_module_t plato_module = { + .create_context = plato_create_context, + .destroy_context = plato_destroy_context, + .render_fragment = plato_render_fragment, + .name = "plato", + .description = "Platonic solids rendered in 3D", + .author = "Vito Caputo ", + .license = "GPLv3", +}; -- cgit v1.2.3